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Abstract

Bayesian statistics offers a normative description for how a person should combine
their original beliefs (i.e., their priors) in light of new evidence (i.e., the likelihood).
Previous research suggests that people tend to under-weight both their prior (base
rate neglect) and the likelihood (conservatism), although this varies by individual
and situation. Yet this work generally elicits people’s knowledge as single point
estimates (e.g., x has 5% probability of occurring) rather than as a full distribu-
tion. Here we demonstrate the utility of eliciting and fitting full distributions when
studying these questions. Across three experiments, we found substantial variation
in the extent to which people showed base rate neglect and conservatism, which
our method allowed us to measure for the first time simultaneously at the level of
the individual. We found that while most people tended to disregard the base rate,
they did so less when the prior was made explicit. Although many individuals were
conservative, there was no apparent systematic relationship between base rate ne-
glect and conservatism within individuals. We suggest that this method shows great
potential for studying human probabilistic reasoning.

Keywords: Bayesian reasoning, representation, probability, belief integration, pri-
ors, optimality, base rate neglect, conservatism

Piers Howe https://orcid.org/0000-0001-6171-1381 Correspondence concerning this article should be ad-
dressed to Piers Howe, School of Psychological Sciences, University of Melbourne, Melbourne, VIC 3010. E-mail:
pdhowe@unimelb.edu.au

https://orcid.org/0000-0001-6171-1381


INSIGHTS FROM FULL DISTRIBUTIONS 2

Introduction

Bayes’ theorem offers a normative account about how beliefs should be updated in light of
new data. According to it, the probability of a belief or hypothesis H conditional on data D is:

P(H|D) ∝ P(D|H)P(H) (1)

where the likelihood P(D|H) is the probability of the data given the hypothesis H, and the prior
P(H) reflects the degree of belief in the hypothesis before seeing the data. Across a wide variety
of domains, Bayesian models have emerged as a powerful tool for understanding human cognition.
One useful aspect of such models is that they provide a normative standard against which human
cognition and decision making can be compared. This approach has been applied successfully in
a wide variety of domains including concept learning (Kemp, 2012; Sanborn et al., 2010), causal
inference (Lucas & Griffiths, 2010), motor control (Wolpert, 2009), and perception (Vincent, 2015).

Despite the success of the Bayesian approach, and though people in the aggregate some-
times appear to behave qualitatively in accordance with Bayesian reasoning (Griffiths et al., 2010),
there is strong evidence that individuals usually do not. People tend not to update their beliefs ex-
actly in accordance with Bayes’ theorem, either by underweighting the prior (Kahneman & Tversky,
1973) or by conservatively updating the likelihood (Phillips & Edwards, 1966) or both (Benjamin
et al., 2019). Base rate neglect occurs when people discount information about prior probabilities
when updating their beliefs. It has been replicated in field settings and hypothetical scenarios (e.g.,
Bar-Hillel, 1980; Kahneman & Tversky, 1973; Kennedy et al., 1997; Tribe, 1971) as well as lab
experiments involving samples of abstract objects such as sampling balls from urns (e.g., Grether,
1980; Griffin & Tversky, 1992). Interestingly, in addition to underweighting the prior, people also
often underweight the likelihood: that is, they fail to update their beliefs as strongly as Bayes’ the-
orem predicts. This phenomenon, known as conservatism, has also been widely replicated across
a variety of situations (Corner et al., 2010; Grether, 1992; Hammerton, 1973; Holt & Smith, 2009;
Peterson & Miller, 1965; Phillips & Edwards, 1966; Slovic & Lichtenstein, 1971).

To some extent, base rate neglect and conservatism cannot easily be separated. Assuming
a point prior hypothesis and a single data point, in fact, it is mathematically impossible to identify
whether the prior or the likelihood is responsible for a particular pattern of inference: a weaker
inference than expected could reflect either conservative updating or stronger priors than were as-
sumed, while a stronger inference than expected could reflect either weaker priors or overweighting
the likelihood. Most research exploring base rate neglect and conservatism does not disentangle
the effects of priors and likelihoods, and those studies that do focus on aggregate behaviour (see
Benjamin et al., 2019, for a review). As a result, little is known about how conservatism and base
rate neglect co-occur within the same individual. More problematically, as Mandel (2014) points
out, people’s priors are typically not measured at all; it is instead assumed that they correspond to
the given base rate. However, if they do not – for instance, if participants are suspicious about the
accuracy of the base rate or they represent it with some fuzziness in memory – this could look like
conservative updating or base rate neglect when it is not.
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Even those studies that explicitly measure people’s priors are somewhat lacking, since vir-
tually all of them elicit priors (and posteriors) as point estimates rather than full distributions (see,
e.g., Benjamin et al., 2019; Mandel, 2014; Savage, 1971; Wallsten & Budescu, 1983, for overviews
and discussion). This matters because, as illustrated in Figure 1, distributional shape plays an im-
portant role in belief updating: even perfect Bayesian reasoners whose priors have the exact same
expected value may draw different conclusions if their priors have different distributional shapes.
Thus, determining whether people update their beliefs in accordance with Bayes’ theorem depends
heavily on obtaining an accurate measure of the full distribution of prior beliefs.

Of course, this is only relevant if people actually do represent probabilities as distributions,
at least implicitly. It is generally assumed that this is the case, as described by Wallsten and Budescu
(1983) when discussing the measurement of subjective probabilities: “Upon being asked to evaluate
the probability of an outcome, a person will search his or her memory for relevant knowledge,
combine it with the information at hand, and (presumably) provide the best judgment possible...
If the same situation were replicated a large number of times, and if the person had no memory
of his or her previous judgments, the encoded probabilities, x, would give rise to a distribution for
that particular individual” (p 153). This view reflects considerable (if often implicit) agreement;
even those who suggest that people make specific inferences on the basis of samples rather than
full distributions assume that the underlying representation from which the samples are generated
is a distribution (e.g., Lieder & Griffiths, 2020; Mozer et al., 2008; Vul et al., 2009; Vul & Pashler,
2008). Indeed, there is a rich literature about how best to elicit and measure full belief distributions
(see Schlag et al., 2015, for a review). This literature, which was developed in applied contexts
such as political science and expert elicitation, has rarely been used in research on Bayesian belief
updating and provides the methodology that we employ here.

Our aim was to investigate the extent to which people demonstrate base rate neglect and/or
conservatism in a simple probability task when their responses are full probability distributions
rather than single estimates. Uniquely, we model not only the aggregate behaviour of all of our
participants, but also each individual person’s inferences based on their reported prior and posterior
distributions. For each individual we are able to simultaneously estimate their degree of base rate
neglect and their degree of conservatism based on their data from a single task. We elicited the
prior and posterior distributions by asking people to draw histograms in an online visual interface
involving bars; as Goldstein and Rothschild (2014) show, this method is intuitive to lay people and
results in more accurate estimates than typical verbal reports.

The probability task consists of a game, common in this literature, known as the urn problem
(Corner et al., 2010; Johnson & Kotz, 1977; Peterson & Miller, 1965). In a typical version of
this game, participants are asked to imagine a container like an urn containing two different types
of object (e.g., red and blue chips). Objects are drawn from the container and are revealed to
the participant sequentially. Based on this information, people are asked to estimate the overall
proportion of one of the types of objects (e.g., red chips) in the container.1

1Although the urn problem is traditionally used to study probabilistic reasoning, technically participants estimate
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Figure 1

The importance of distributional shape in Bayesian updating

Note. The reasoners in both panels are perfect Bayesians who are estimating the probability of observing
a certain outcome, such as pulling a red ball from an urn. Both have priors with the same expected value
(single dots such that P(red) = 1

3 ) but different full prior distributions (dotted lines). The prior on the left,
Beta(0.25,0.5), reflects initial beliefs that the urn has either mostly red balls or mostly blue balls (probably
mostly blue). The one on the right, Beta(2,4), reflects the belief that there are slightly more blue balls.
This difference in distributional shape has a strong effect on the posterior distributions that are inferred after
seeing a single new data point corresponding to one red ball. Not only do the posteriors have different
distributional shapes, the expected values (diamonds) are also different: the one on the left has an expected
value of P(red) = 0.74 and the one on the right P(red) = 0.43. This shows that fully capturing Bayesian
updating requires getting the shape of the underlying distribution right, not just accurately measuring the
point estimate of the expected value of the prior.

We report three experiments. In Experiment 1, we presented people with the urn problem
but elicited their priors and posteriors as distributions rather than single estimates by having them
draw histograms. We had two main goals in doing this: to establish what people actually assume
if the prior is left unspecified, and to determine to what extent each person’s reasoning was well-
captured by Bayes’ theorem using their stated prior. Our findings suggested that people showed
substantial individual differences in their reported priors as well as how closely they followed the
predictions of Bayes’ theorem. That said, the majority demonstrated strong base rate neglect, with
most people completely or almost completely disregarding their stated priors. They also showed a
moderate degree of conservatism, updating their beliefs somewhat less than a fully Bayesian rea-
soner would, with no readily apparent systematic relationship between the two. We followed up in
Experiment 2 by presenting people with explicit information about a stronger prior distribution in

proportions, not probabilities. However, in the urn problem they are equivalent; because all chips have an equal chance
of being drawn, the probability that a red chip is drawn next is equal to the proportion of chips in the urn that are red. The
advantage in explaining the task in terms of proportions rather than in terms of probabilities is that participants typically
find the former formulation easier to understand (Gigerenzer & Hoffrage, 1995).
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order to determine whether this changed the extent to which they incorporated it. Most participants
still showed some conservatism and base rate neglect, although less strongly. To ensure that these
results were not due to the particular prior used in that experiment, Experiment 3 used a different
prior – the prior that, in the aggregate, people assume when not explicitly given a prior (as deter-
mined by Experiment 1). Experiment 3 confirmed that explicitly giving participants a prior caused
them to neglect the base rate less than when they were required to infer the prior for themselves.2

Experiment 1

Method

According to Bayes’ theorem, the degree to which a person’s prior influences their posterior
is determined by the amount of data they see: the more data, the more the posterior is shaped by
the likelihood rather than the prior. We therefore studied scenarios which varied in the amount of
evidence provided: some participants were shown just five chips drawn from the urn before they
were asked to state their posterior, while others were shown five chips and then allowed to draw as
many additional chips as they desired.

The MAIN condition of this experiment involved a within-subjects design that combined
both scenarios. In it, participants reported three distributions: their prior, their posterior after seeing
five chips, and their posterior after as many additional chips as they wanted. In order to ensure that
the act of eliciting multiple distributions did not change how participants reported their estimates,
we also ran two control conditions. In the ONLYFIVE condition people did not report a prior and
reported only one posterior, after five chips. In the ONLYUNLIMITED condition participants did not
report a prior and reported only one posterior, this time after viewing as many chips as they wanted.

Participants

452 people (249 male, 201 female, 2 non-binary) were recruited via Prolific Academic and
paid 60 British pence. Mean age was 31 years old. Ninety were excluded because they failed the
bot check (see below) or did not adjust any bars when estimating distributions. All participants
gave informed consent and all three experiments in this paper were approved by the University of
Melbourne School of Psychological Sciences Human Ethics Advisory Group (ID: 1544692).

Materials

In all conditions, participants were shown an image of a bag that they were told contained
red and blue chips. They were asked to provide their probability distributions by adjusting sliders
corresponding to bars of a histogram, as shown in Figure 2. The first bar represented the participant’s
estimate of the probability that 0% of the chips in the bag were red, the second that 10% were red,
and so on, with the final slider representing their estimate of the probability that 100% of the chips
were red. The sliders were initialised randomly and constrained so that the total probability added

2Data and analysis code for all experiments can be found at https://github.com/perfors/probability/
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Figure 2

Experiment 1: Elicitation of participants’ probability distributions

Note. A screenshot showing the methodology we used (in all experiments) for participants to report their
probability distributions, similar to that of Goldstein and Rothschild (2014). People clicked on each bar
to adjust its height. Clicking on a bar temporarily changed its colour to red. The different set of controls
mentioned in the screenshot were a series of up and down buttons participants could press to adjust each
slider. All probability distributions were constrained to sum to 100%.

up to 100%. In this way, by varying the position of the sliders, people could draw their probability
distributions. When they were satisfied they pressed the submit button to continue.

Procedure

Bot check. All participants were initially asked a series of four multiple-choice questions
to determine that they were human with adequate English abilities and not a bot. These questions
posed analogies of the form “Mother is to daughter as father is to...” (in this example, the correct
answer is “son”). Providing an incorrect answer to any of these questions counted as failing the bot
check; data from these participants were not analysed. Following the bot check, instructions were
presented, demographic information was collected, and people were allocated randomly to one of
three conditions.

ONLYFIVE condition. Participants in this condition (N = 126) were shown an image of a
bag that they were told contained red and blue chips. Five chips (four red and one blue) were then
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drawn from the bag and presented to each participant one at a time in a random order. Participants
were asked to report their estimate of the proportion of red chips in the bag using the histogram
visualisation tool shown in Figure 2.

ONLYUNLIMITED condition. This condition was identical to the ONLYFIVE condition,
except after the first five chips were presented, instead of reporting their posterior participants (N =

129) were given the option of drawing an additional chip. If they chose to draw one, after a delay of
one second they were informed of the colour of the chip and given the option to draw another. This
process could be repeated as many times as the participant desired. For the first five chips, four were
red and one was blue, but the position of the blue chip in the sequence was randomised between
participants. In every additional sequence of five chips, the pattern repeated: four chips were always
red and one was always blue, but the position of the blue chip was randomised. After the participant
was satisfied that they had drawn enough chips, they were asked to report their estimate of the
proportion of red chips using the histogram visualisation tool shown in Figure 2.

MAIN condition. This condition was identical to the previous two except that each person
(N = 107) was asked to estimate the distribution three times: once before being shown any chips,
once after being shown five chips, and finally after having had the opportunity to view as many
additional chips as they desired. Thus, each participant estimated one prior probability distribution
and two posterior probability distributions, one after five chips and one after an unlimited number.

Modelling

Our research questions required determining the extent to which people under-weighted
their prior and/or likelihood when reasoning about what chips they expected to see. We thus mod-
elled participants as Bayesian reasoners who made inferences according to the following equation:

P(x|nr,nb) ∝ P(nr,nb|x)P(x) (2)

where x is their belief or hypothesis about the proportion of chips in the bag that are red and nr and
nb represent the observed data (i.e., the number of chips that were drawn from the bag that were red
and blue respectively). Thus, P(x|nr,nb) is the posterior and P(x) is the prior.

Prior. We captured each participant’s level of base rate neglect with a parameter β which is
a weighted average of the participant’s stated prior, ϕ, and a uniform distribution U , as in Equation 3.
The value for β is a constant ranging from 0 to 1, with β = 0 indicating that the stated prior was
ignored entirely when calculating the posterior (i.e., complete base rate neglect) and β= 1 indicating
that the prior was weighted appropriately (i.e., no base rate neglect at all).

P(x) = βϕ+(1−β)U (3)

Likelihood. In an urn problem such as ours, P(nr,nb|x) is captured according to a binomial
likelihood function. In order to capture the extent to which each participant over-weights or under-
weights the evidence, we use a parameter γ which intuitively captures how many “effective” red (nr)
or blue (nb) chips the participant incorporates into their calculations, as in Equation 4. Thus, when
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γ = 1, participants are neither over-weighting nor under-weighting the evidence; γ < 1 indicates
conservatism while γ > 1 indicates over-weighting the data.3

P(nr,nb|x) ∝ xγnr(1− x)γnb (4)

As with the prior, the reported posteriors for each person were smoothed by adding 0.01 to
the zero values and then normalising; this ensured that fits would not be artificially distorted by the
propagation of zero values. (Analyses without this smoothing had qualitatively similar outcomes.)
Optimal values for β and γ were calculated for the MAIN condition (the only one with both priors
and posteriors) in aggregate as well as separately for each individual. The analysis was performed
in R using the optim function, with β constrained to be within 0.0000001 and 0.9999999 and γ

within 0.0000001 and 50 using the L-BFGS-B method. The function being minimised was the mean
squared error between the model’s prediction and the reported posterior. The supplemental materials
contain information about the model fits, which were very good in all experiments.

Results

Aggregate performance

In order to ensure that the act of eliciting a prior or multiple posteriors did not change how
participants reported probability distributions, we first compare the posteriors obtained from the
two control conditions (i.e., the ONLYFIVE and ONLYUNLIMITED conditions) to the corresponding
posteriors obtained from the MAIN condition (i.e. the posterior obtained after participants saw five
chips and the posterior obtained after participants saw as many additional chips as they desired). As
shown in Figure 3, the aggregate posteriors are extremely similar regardless of whether participants
were asked to report their priors first (solid lines) or not (dotted lines). In both subplots, for all
three conditions the mode is at 80%, indicating that participants on average correctly reported that
they expected about 80% of the chips to be red regardless of the condition. Comparing the right
subplot to the left subplot, we see that the peak was narrower indicating that the participants were
more certain of the proportion of red chips after seeing more chips. Overall, this indicates that
participants understood the task and reported reasonable distributions. More importantly, these
results demonstrate that asking participants to estimate the prior did not substantially alter their
subsequent estimates of the posterior.4 This allows us to focus on the MAIN condition, where
each participant estimated three probability distributions: one before viewing any chips, one after
viewing five chips, and one after viewing an unlimited number of additional chips.

3We also performed a version of this analysis which had two free parameters, one that weighted nr and a separate one
that weighted nb, to capture a situation where participants might weight blue chips more or less than red chips. Results
were qualitatively identical and the two parameters were similar to each other, suggesting that both chips were better
modelled with one parameter.

4We also compared the average number of chips people asked for in the ONLYUNLIMITED condition (M = 18.05)
and in the MAIN condition after viewing an unlimited number of chips (M = 21.18). A Welch t-test was not significant,
t(233.1) = 1.65, p = .100, suggesting that participants who reported multiple distributions requested a similar number of
chips as those who reported only one.
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Figure 3

Experiment 1: Aggregate posterior estimates after viewing five or an unlimited number of chips

Note. Aggregate posterior estimates of the distribution of the probability that the bag contains a given propor-
tion of red chips (y axis), for proportions ranging from 0% to 100% (x axis). Left panel. Posterior estimates
after viewing five chips. The solid dark blue line reflects the aggregate posterior estimate of people in the
MAIN condition after having seen five chips, while the dashed black line reflects the aggregate posterior
estimate of those in the ONLYFIVE condition. Dark blue dots indicate individual estimates in the MAIN

condition and light grey Xs indicate those in the ONLYFIVE condition. The aggregate posterior estimates are
extremely similar in both conditions, with a mode at 80%, indicating that the posteriors are reasonable and
that eliciting priors beforehand does not measurably change their behaviour. Right panel. Posterior estimates
after viewing an unlimited number of chips. The solid light blue line reflects the aggregate posterior estimate
of people in the MAIN condition after having seen unlimitted chips, while the dashed black line reflects the
aggregate posterior estimate of those in the ONLYUNLIMITED condition. Light blue dots indicate individ-
ual estimates in the MAIN condition and light grey Xs indicate those in the ONLYUNLIMITED condition.
The aggregate posterior estimates are extremely similar in both conditions, with a mode at 80%. As before,
this indicates that the posteriors are reasonable and that reporting their distributions multiple times does not
change their behaviour.

We can ask several questions of this data on the aggregate level. First, what prior distribu-
tion was reported? Participants were not given any information about the quantity of red or blue
chips in the bag, so this question allows us to investigate what they presumed in the absence of any
instruction. Figure 4 shows the aggregate prior (red line), which has a small peak at 50%, suggesting
that on balance people think that a 50/50 split of red and blue chips is more likely than any other
mixture. That said, the probability distribution is also fairly uniform across all possible values, in-
dicating that participants would not be terribly surprised if the bag contained all red chips, all blue
chips, or any of the other possible combinations.

A second question we can ask of the aggregate data is, when we fit it to our model by
adjusting β and γ, what do the resulting parameters tell us about the degree of base rate neglect and
conservatism shown by the population as a whole? As Figure 4 makes clear, the best-fit parameters
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Figure 4

Experiment 1: Aggregate best-fit estimates in the MAIN condition after viewing five and an unlim-
ited number of chips

Note. Aggregate distributions for prior beliefs (red line) as well as after seeing five chips (dark blue line, left
panel) and unlimited chips (light blue line, right panel) in the MAIN condition. In both panels, the grey line
indicates the optimal Bayesian prediction (i.e. β = γ = 1) given the aggregate prior, while the black dotted
line indicates the prediction of the line of best fit based on the inferred parameters β and γ. In both panels, the
best fit β is zero, indicating that the aggregate posterior was best fit by completely disregarding the aggregate
prior (i.e., complete base rate neglect). The best fit values for γ indicates a moderate degree of conservatism
in both conditions.

after both five chips and unlimited chips were similar. In both cases, they reflect that the aggregate
posteriors were best captured assuming people ignore their reported priors completely (i.e., β = 0)
and show a moderate degree of conservatism in updating (i.e., γ < 1). We can understand intuitively
why this is the case by comparing the reported posteriors with the predicted posteriors that would
we would expect from an optimal Bayesian reasoner (grey line, β = γ = 1). Such a reasoner would
have a more bimodal posterior than we observed, especially after only five chips, which reflects the
influence of the prior.

Individual performance

One of our main motivations was to understand how individuals (rather than populations)
represented and updated their beliefs. Figure 5(a) shows the distribution of β and γ obtained when
fit to each person separately. It is apparent that there is substantial individual variation and there
are few differences based on whether five or unlimited chips were seen. That said, most people
showed partial or complete base rate neglect: around half of people completely disregarded their
priors (51.4% of people after seeing five chips and 56.1% after seeing unlimited chips had β < 0.1)
and only a minority showed no base rate neglect at all (17.8% of people after seeing five chips and
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22.4% after seeing unlimited chips had β > 0.9). Participants varied more in how they weighted
the likelihood, with around half of the participants being conservative (50.4% of people after seeing
five chips and 57.9% after seeing unlimited chips had γ < 1).

Figure 5

Experiment 1: Distribution of fitted β and γ values across individuals in the MAIN condition

(a) (b)

Note. Histograms showing the distribution of best-fit β and γ values across individuals after five and unlimited
chips in the MAIN condition. (a) β and γ were fit jointly; (b) β and γ were fit assuming the other was 1.
Regardless of whether the parameters were fit jointly or not, distributions of β indicate that the majority of
people showed a moderate or large amount of base rate neglect; their inferences were best described with β

values less than one and often close to zero, indicating that the posterior distribution they reported was best
explained by assuming that they disregarded their reported prior at least partially and often completely. There
was a more varied distribution of γ values, with about half showing conservative updating (γ < 1).

There was no obvious systematic relationship between β and γ values within individuals;
it was not the case that a low β meant high γ or vice versa (Spearman correlation, after five chips:
ρ = .040, p = .680; after unlimited chips: ρ = .18, p = .060; see the supplemental materials for the
scatterplots). In order to ensure that β and γ were identifiable by the model, we also separately fit
each parameter while holding the other constant. That is, we (i) examined the range of β values
obtained when the model assumed that each person updated their likelihood appropriately (i.e., that
γ = 1 for everybody); and (ii) also examined the range of γ values obtained when the model assumed
that each person updated their prior appropriately (i.e., that β= 1 for everybody). This result, shown
in Figure 5(b), demonstrates that this makes no qualitative difference: the majority of participants
still showed base rate neglect (i.e., were best fit by β values close to zero: 55.1% after five and
unlimited chips had β < 0.1) and similar levels of conservatism (38.3% after five chips and 49.5%
after unlimited chips had γ < 1).

To get an intuitive sense of what people are doing, we can inspect the individual distribu-
tions. Figure 6 shows some representative examples, and all participants are shown in the supple-
mental materials. There is considerable heterogeneity: people report a wide variety of both priors
and posteriors. That said, observation of the distributions makes it clear how it is possible to tease
apart the weightings of the prior and the likelihood separately. Under-weighting the prior results



INSIGHTS FROM FULL DISTRIBUTIONS 12

Figure 6

Experiment 1: Illustrative examples of individual distributions, data from the MAIN condition

Note. A sample of some individual participants after receiving five chips (left) and unlimited chips (right).
The red line is the reported prior, the dark and light blue lines are the reported posteriors after five and un-
limited chips respectively, the grey line is the posterior obtained by a optimally calibrated Bayesian reasoner
with that prior (β = γ = 1), and the dotted black line is the posterior obtained by the best-fit values of β and γ

for that person. The grey label for each panel reports those values as well as the mean squared error of the fit
(MSE, with 0 being perfect). The number in parenthesis is the participant ID.

in a posterior distribution with a different shape (with multiple modes) or a different mode (closer
to the likelihood) than the posterior distribution produced by an optimal Bayesian learner with that
prior. By contrast, different likelihood weights change the height of the mode: conservative updat-
ing results in a mode that is lower than the Bayesian prediction, while over-weighting the likelihood
results in a mode that is higher than the predicted one. As such, inspection of the individual curves
is useful for understanding qualitatively what the quantitative fits of β and γ reveal.

Although our model fits in general were excellent (82.2% of people were fit with an MSE
of 0.01 or less and 96.7% with 0.05 or less), one might still worry about whether our results were
driven in part by the participants who were not fit well by the model. For instance, if all of the
people for whom β = 0 were also fit badly, this might not mean that most people showed base rate
neglect after all. In order to ensure that this was not the case, we redid all analyses after excluding
the people with mean squared error greater than than 0.01. This did not change the qualitative
results, with most of the 76 remaining participants still showing a high degree of base rate neglect
and varying in conservatism (see the supplemental materials). This suggests that our results are not
an artefact of poor fits, and we can be somewhat confident in our interpretation of the parameters.
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Experiment 2

In Experiment 1 most participants showed base rate neglect, partially or completely ignor-
ing their own reported prior when updating their beliefs in light of new data. Why did they do this?
One possibility is that the task demands encouraged them to do so, since no prior was ever explicitly
given and physically seeing chips being drawn may have made the data more salient. In Experiment
2, we investigated this possibility by explicitly giving participants the prior. People in the PEAKED

prior condition were shown a distribution with a mode at a proportion of 80% red chips (as this most
closely aligned with the data the participants would subsequently receive). Those in the UNIFORM

prior condition were shown a completely flat prior; this is a useful comparison because reasoning
based on this prior is equivalent to reasoning that completely ignores the prior. As a result, if partici-
pants always ignore their prior then the posteriors they report should be the same in both conditions;
if not, the posterior should be sharper in the PEAKED condition.

Method

Participants

300 people (184 male, 113 female, 3 non-binary) were recruited via Prolific Academic and
paid 60 British pence. Mean age was 26 years old. Sixty-one people were excluded because they
either failed the bot check or did not adjust any bars when estimating distributions.

Materials and Procedure

This experiment involved the same procedure and instructions as Experiment 1 except that
we presented participants with an explicit prior distribution using the same “bar” format that they
used to report their own. In the PEAKED condition (N = 121) people were informed that a previous
participant who had completed the task several times had stated that “There were usually about four
times more red chips than blue chips in the bag (like, 80% red)” and had also drawn the plot in the
left panel of Figure 7 to illustrate their statement. Conversely, the people in the UNIFORM condition
(N = 118) were informed that a previous participant stated that “The number of red and blue chips
in the bag keeps changing, doesn’t seem to be a pattern to it” and had drawn the plot in the right
panel of Figure 7 to illustrate their statement.

Because Experiment 2 presented participants with an explicit prior, the procedure did not
involve a prior elicitation step. Instead, after having been told the prior, participants were shown
five chips (four red and one blue in random order, as before) and were asked to draw their posterior.

Results

Aggregate performance

We first present the aggregate distributions in each condition, along with the best-fit β and
γ values. As Figure 8 shows, participants in the PEAKED condition were not entirely ignoring the
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Figure 7

Priors shown to people in Experiment 2

Note. A screenshot depicting the priors that participants saw in the two conditions of Experiment 2.

prior; their posterior is tighter and sharper than in the UNIFORM condition, as one would expect
if they were taking the prior into account. That said, a comparison to the posterior inferred by an
optimal Bayesian – along with the inferred β and γ values – demonstrates that people still showed
substantial base rate neglect (albeit less than before) and some degree of conservatism.

Individual performance

As before, we performed individual-level analyses by fitting each participant to the value
of β and γ that best captured their reported posterior based on the prior they were given. The
distribution of these parameters in each condition is shown in Figure 9(a) (recall that there are no β

values in the UNIFORM condition because the given prior was uniform). There is again substantial
individual variation, but most people in the PEAKED condition showed partial or complete base
rate neglect: 38.8% of participants disregarded their priors (with β < 0.1) and only 3.3% showed
no base rate neglect at all (with β > 0.9). That said, more participants than in Experiment 1 paid
some attention to the prior they were given, even if they did not weight it as strongly as an optimal
Bayesian reasoner would have. The degree to which participants weighted the likelihood depended
on their condition. Participants in the PEAKED condition were less likely to be conservative than
those in the UNIFORM condition: 38.8% in PEAKED and 61.0% in UNIFORM had γ < 1.

However, we must sound an important cautionary note at this point. The distributions in
Figure 8 indicate that, unlike in Experiment 1, it may not be so easy to disentangle the effects
of β and γ in the PEAKED condition of Experiment 2. That is because increasing the weighting
of the prior and increasing the weighting of the likelihood both have the same effect: to sharpen
the posterior at 80%. This suggests that in the PEAKED condition, β and γ may not be uniquely
identifiable: participants with peaked posteriors might be equally well-fit by a high β and low γ, low
γ and high β, or moderate γ and moderate β. (Note that this concern does not apply to the UNIFORM

condition as β did not need to be estimated in that condition.) As in Experiment 1, we did not find
an obvious systematic relationship between β and γ values within individuals, but the identifiability
issue means that it is difficult to interpret this result (Spearman correlation, ρ = .141, p = .124; see
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Figure 8

Experiment 2: Aggregate best-fit estimates

Note. Reported distributions for prior beliefs (red line) and posteriors in the PEAKED (dark green line, left
panel) and UNIFORM (light green line, right panel) conditions. The grey line indicates the optimal Bayesian
prediction given the prior, while the black dotted line indicates the prediction of the line of best fit based on
the inferred parameters β and γ. The posterior distribution is noticeably sharper in the PEAKED condition,
suggesting that people are using the base rate information to at least some extent. Consistent with this, β in
the PEAKED condition is 0.39, indicating that the aggregate posterior was best fit assuming that participants
partially used the prior they were given: more than in Experiment 1, but less than an optimal Bayesian would
(β = 1). In both conditions, the value for γ indicates a moderate degree of conservatism on average.

the supplemental materials for the scatterplots and further discussion).

To explore the extent of the identifiability problem, we again (i) examined the β values ob-
tained when the model assumed that each person updated their likelihood appropriately (i.e., that
γ = 1 for everybody); and (ii) examined the γ values obtained when the model assumed that each
person updated their prior appropriately (i.e., that β = 1 for everybody). (Note that this was only
relevant for the PEAKED condition, since in the uniform condition there was only one parameter
anyway). The result, shown in Figure 9(b), demonstrates that the parameters are distributed differ-
ently when inferred singly rather than jointly. When γ is constrained to 1, more participants showed
no base rate neglect at all (25.6% instead of 3.3% obtained β > 0.9) and slightly fewer showed com-
plete base rate neglect (33.9% instead of 38.8% had β < 0.1). Conversely, when β is constrained to
be 1, more participants appear to be reasoning conservatively (74.4% instead of 38.8% had γ < 1).
This suggests that for participants who made reasonably strong inferences, the model could not de-
termine whether this was because they weighted their prior highly and reasoned conservatively, they
ignored their prior and weighted the likelihood highly, or they weighted both a moderate amount.

Although our model fits were again excellent (79.1% of people were fit with MSE less
than 0.01, and 98.7% with MSE less than 0.05), as before we redid all analyses after excluding the
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Figure 9

Experiment 2: Distribution of fitted β and γ values across individuals

(a) (b)

Note. Histograms showing the distribution of best-fit β and γ values across individuals in the PEAKED and
UNIFORM conditions. (a) β and γ were fit jointly; (b) β and γ were fit assuming the other was 1. When the
parameters were fit jointly (a), most people (although fewer than in Experiment 1) showed a moderate or
large amount of base rate neglect and there was a varied distribution of γ values, with more people showing
conservative updating in the UNIFORM condition. When they were not (b), the parameters look far different:
many more people in the PEAKED condition show no base rate neglect (β at or near 1) and many more
are conservative (γ < 1). This suggests that in Experiment 2, γ and β are not easily distinguishable by the
model. (N.B. This analysis was done only for the PEAKED condition as β was not estimated in the UNIFORM

condition.)

people that were not fit well by our model (i.e., the people with mean squared error greater than
than 0.01). As documented in the supplemental materials, this did not change the qualitative results:
the remaining 189 people still appeared to show some base rate neglect in the aggregate, but the
PEAKED condition had a sharper posterior than the UNIFORM condition, demonstrating that they
did take the prior into account at least somewhat. For individual participants, the best-fit β and γ

values were, again, not identifiable in the PEAKED condition unless the inferences were very weak
(in which both β and γ were very low).

Experiment 3

The PEAKED condition of Experiment 2 suggested that even when the prior is made explicit,
people underweight it relative to how they should weight it according to Bayes’ theorem. However,
this finding must be interpreted with caution because, in that condition, we were not able to reliably
disentangle the effects of weighting the prior from the effects of weighting the likelihood since
both peaked at a proportion of 80% red. Experiment 3 addressed this concern by explicitly giving
participants a prior that peaked at a value of 50%.



INSIGHTS FROM FULL DISTRIBUTIONS 17

Method

Participants

300 participants (132 male, 162 female, 6 non-binary) were recruited via Prolific Academic
and paid 60 British pence. Mean age was 25 years old. Thirty-nine people were excluded because
they either failed the bot check or did not adjust any bars when estimating distributions.

Materials and Procedure

The experiment involved the same procedure and instructions as before except for the fol-
lowing differences. In the ESTIMATED condition participants were not provided with a prior. It was
thus identical to the MAIN condition of Experiment 1, except that the experiment stopped after the
participants had reported the first posterior (i.e. after the participant had seen five chips). In the
GIVEN condition people (N = 133) were provided with a prior. It was thus identical to the PEAKED

condition of Experiment 2 except that the prior they were shown corresponded to the aggregate
prior reported in Experiment 1. We designed it this way because it means that in both conditions
we would expect people to have the same prior; the conditions differ only in whether that prior was
explicitly provided or not.

Figure 10

Experiment 3: Reported prior distributions

Note. Aggregate prior estimates of the distribution of the probability that the bag contains a given proportion
of red chips (y axis), for proportions ranging from 0% to 100% (x axis). The solid red line reflects the
aggregate of the priors reported in the ESTIMATED condition, while for comparison the dashed black line
reflects the prior shown to people in the GIVEN condition. Red dots indicate individual estimates in the
ESTIMATED condition. The priors are extremely similar in both conditions, suggesting that any difference in
posteriors is not due to differences in the prior.
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Figure 11

Experiment 3: Aggregate best-fit estimates

Note. Reported distributions for prior beliefs (red line) and posteriors in the ESTIMATED (dark purple line,
left panel) and GIVEN (light purple line, right panel) conditions. The grey line indicates the optimal Bayesian
prediction given the prior, while the black dotted line indicates the prediction of the line of best fit based
on the inferred parameters β and γ. The posterior distribution is unimodal in the ESTIMATED condition but
multimodal in the GIVEN condition, suggesting that in the GIVEN condition people are using the given prior,
at least some extent. Consistent with this, β in the GIVEN condition is 0.32, indicating that the aggregate
posterior was best fit assuming that participants partially used the prior they were given: more than in Exper-
iment 1 and the ESTIMATED condition where β was always equal to zero, but less than an optimal Bayesian
would (β = 1). In both conditions, the value for γ indicates a moderate degree of conservatism, though the
degree of conservatism is somewhat less in the ESTIMATED condition.

Results

Aggregate performance

As shown by Figure 10, the prior reported by the participants in the ESTIMATED condition
(solid red line) was very similar to the prior provided to the participants in the GIVEN condition
(dashed black line). This suggests that any differences in the posteriors in the two conditions is
unlikely to be due to differences in their priors.

Figure 11 shows the aggregate posterior distributions for each condition, shown alongside
the optimal Bayesian prediction as well as the prediction made using the best-fit parameters β and
γ. As expected, the best fit parameters for the ESTIMATED condition (β = 0, γ = 0.48) are very
similar to the best fit parameters in the FIVE condition in Experiment 1 (β = 0, γ = 0.55), with
participants in the aggregate demonstrating complete base rate neglect (β = 0). Conversely, in
the GIVEN condition participants made much more use of the prior (β = 0.32). This resulted in
a posterior with two modes corresponding to the peaks of the prior and the likelihood. This is
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Figure 12

Experiment 3: Distribution of fitted β and γ values across individuals

(a) (b)

Note. Histograms showing the distribution of best-fit β and γ values across individuals in the ESTIMATED

and GIVEN conditions. (a) β and γ were fit jointly; (b) β and γ were fit assuming the other was 1. In both
cases, the distributions for β show that most people in the ESTIMATED condition, as in Experiment 1, showed
a moderate or large amount of base rate neglect, but that this flipped in the GIVEN condition. There was again
a varied distribution of γ values.

consistent with the finding from the PEAKED condition of Experiment 2 that when the prior is made
explicit, participants make use of it, but not to the extent predicted by Bayes’ theorem.

Individual performance

As before, we performed individual-level analyses by fitting each participant to the value of
β and γ that best captured their reported posterior given their prior. The distribution of these param-
eters in each condition is shown in Figure 12(a). The results in the ESTIMATED condition are very
similar to the analogous condition of Experiment 1, with many participants disregarding their prior
(43.8% had a β < 0.1, compared to 51.4% previously) and a minority weighting it appropriately
(23.4% had a β > 0.9, compared to 17.8% previously). The results from the GIVEN condition are
consistent with the observation from Experiment 2 that participants pay more attention to the base
rate when the prior is made explicit: fewer people in the GIVEN condition than the ESTIMATED one
ignored the base rate entirely (26.3% had β < 0.1) and more weighted it appropriately (41.4% had
β > 0.9). As before, a moderate number of participants reasoned conservatively (51.6% in the ES-
TIMATED condition and 70.7% in the GIVEN condition had γ < 1). There was also again no obvious
systematic relationship between β and γ (Spearman correlation, ESTIMATED: ρ = .137, p = .124;
GIVEN: ρ =−.04, p = .675; see supplemental materials for scatterplots). Thus, the degree to which
an individual weights the prior does not predict the degree to which they weight the likelihood.

To confirm that we could now disentangle the effects of β and γ, we again examined (i)
the range of β values obtained when the model assumed that each person updated their likelihood
appropriately (i.e., that γ = 1 for everybody) and, in a separate analysis, (ii) examined the range
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of γ values obtained when the model assumed that each person updated their prior appropriately
(i.e., that β = 1 for everybody). The results are shown in Figure 12(b). As in Experiment 1, the
distributions obtained by fitting the parameters jointly or singularly are similar. In the ESTIMATED

condition, a large number of participants show complete base rate neglect (46.1% have β < 0.1)
and few weight it appropriately (18.8% have β > 0.9). Conversely, fewer participants in the GIVEN

condition show complete base rate neglect (20.3% have β < 0.1) and more weight it appropriately
(51.1% have β > 0.9). Qualitatively similar numbers of participants are conservative as when the
parameters are inferred jointly (63.9% in GIVEN and 43% in ESTIMATED had γ < 1).

The model fits for Experiment 3 were equally as good as in previous experiments (81.6%
of people had an MSE of less than 0.01, and 98.5% less than 0.05). Nevertheless, as before, we
redid all analyses after excluding the people with MSE less than 0.01, leaving 213 in the dataset. As
shown in the supplementary materials, this did not change the qualitative results. On the aggregate
as well as individual levels, in the ESTIMATED condition participants were more likely to ignore
their prior whereas in the GIVEN condition more participants used the prior.

Discussion

In this paper we asked to what extent human probability reasoning conforms to the norma-
tive standards prescribed by Bayes’ theorem when participants present their probability estimates as
entire distributions rather than as point estimates. Our first experiment was inspired by the standard
balls-and-urn task. Participants were shown a bag containing a number of chips, some red and some
blue, and were asked to provide three probability distributions (one prior and two posteriors) using
a visual histogram tool similar to that of Goldstein and Rothschild (2014). The task description
gave no information about the likely ratio of red to blue chips, and participants varied substantially
in the shape of the priors they assumed, though many were peaked, to a greater or lesser extent,
around 50%. Fitting individual participants revealed that, regardless of whether they saw only five
chips or were allowed to view as many chips as they desired, the majority showed substantial base
rate neglect (i.e., ignoring the prior they had reported) and varied in the degree to which they were
conservative (i.e., updating their likelihoods less than a normative Bayesian reasoner).

In order to determine whether people ignored their prior because it was not explicitly stated,
in Experiment 2 we presented people with either a uniform or a peaked prior and then asked for their
posterior distributions after seeing five chips. Here the aggregate results revealed that, even when
given an explicit prior, there was some degree of base rate neglect. However, they had sharper
posteriors when given a peaked prior than when given a uniform prior, indicating that the priors
were not being ignored entirely. This was supported by fitting individual participants: although
variation was again substantial, more people used the prior when it was made explicit in the PEAKED

condition than when it was not.
This final result needs to be interpreted with caution as it was unclear to what extent the two

parameters could be uniquely identified for each individual in the PEAKED condition: since both
the prior and the likelihood peaked at the same proportion (80%), the effect of one could easily be
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mistaken as being caused by the other. Experiment 3 addressed this concern by using an explicit
prior that peaked at a different proportion, thereby ensuring that the effects of the prior and the
likelihood were uniquely identifiable. It confirmed the findings of Experiment 2: when the prior is
made explicit, people weigh it more than when it is not.

Some of the subtleties that arose in our analysis illustrate both the benefits and complexities
of measuring and fitting full probability distributions. There are several benefits. For instance,
providing the prior and the likelihood have different modes, this method allows us to disentangle,
for a single individual participant on a single reasoning problem, to what extent they under-weight or
over-weight both their prior and their likelihood. This is not possible using any other methodology:
mathematically, a single point posterior is compatible with any possible weighting of each. The
studies that do attempt to disentangle prior and likelihood weightings do so by presenting multiple
problems, systematically varying both the priors and the evidence (e.g., Benjamin et al., 2019;
Griffin & Tversky, 1992). This is sometimes useful, but presumes that people weigh their priors
and likelihoods similarly across all problems. Our results suggest that this is not necessarily the
case: people showed more base rate neglect in some circumstances than in others.

Another benefit is that because each individual was fit separately for both prior and likeli-
hood weights, we could determine both how each of these tendencies varied among people as well
as how they related to each other. For instance, Experiment 1 demonstrated that most people either
completely ignored their priors (with β close to 0) or weighted them appropriately (with β close
to 1); that is, the distribution over β was bimodal, with few intermediate values. Because of the
identifiability issue we cannot draw strong conclusions from the PEAKED condition of Experiment
2, but it is striking then when the likelihood weight was held constant, a similar bimodal distribution
emerged. This finding was then confirmed by Experiment 3, which did not suffer from the identi-
fiability issue. Moreover, across all experiments we observed no systematic relationship between
how people weighted their priors and likelihood terms: it wasn’t the case that people who under-
weighted one tended to under-weight the other, or vice-versa. To our knowledge this is a novel
finding; future research is necessary to determine how robust it is and how far it extends.

More broadly, this research demonstrates why it can be useful to elicit and analyse entire
distributions rather than single point estimates. As long as (i) the prior is not uniform and (ii) the
prior and likelihood have different modes (unlike in Experiment 2), the two terms make different
contributions to the shape of the posterior distribution, so their individual contributions can be es-
timated. Our approach can be extended to consider cases like Figure 1 where the differences are
even more pronounced than in the present study. There is a great deal of potential in applying this
methodology to long-standing problems in human reasoning. Might the framing of the problem (i.e.
how the problem is presented to the participants) affect base rate neglect (Barbey & Sloman, 2007)
at least in part because people may implicitly assume priors with different distributional shapes
(reflecting different levels of confidence or extent) depending on how the problem is presented to
them? Might base rate neglect be smaller for priors that are easier to use, represent, or sample from?
To what extent do anchoring effects change if the information is presented as a full distribution? Do
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the same individuals weight their priors and likelihoods the same across different problems? These
are only some of the questions that can now be addressed.

One potential worry about the validity of our method is the extent to which people can
actually accurately report their underlying distribution. If people reason by drawing a small number
of samples from their distribution, as some suggest (Vul et al., 2014), it is not obvious that this
would be sufficient for people to reconstruct and report the actual distribution. Although this is a
possibility we cannot rule out with certainty, it seems unlikely: the distributions people reported
seem reasonable both individually and in the aggregate, and reflect the overall patterns one would
expect: tightening with additional information in Experiment 1, stronger inferences with a stronger
prior in Experiment 2, and more reliance on the prior when it is made explicit in Experiment 3.
Moreover, the method has been tested and shown to be equally if not more accurate than verbal
reports (Goldstein & Rothschild, 2014). That said, it remains to be seen if it can be applied to more
complex distributions: for instance, bimodal or highly skewed distributions may require more than a
few samples in order to capture the important moments, and it is unclear whether people can report
or use such distributions while reasoning. This is another exciting avenue of future research that our
methodology opens up.

In sum, this paper presents initial research demonstrating the utility of eliciting and fitting
full distributions when studying probabilistic reasoning. Across three experiments, we found sub-
stantial variation in the extent to which people showed base rate neglect and conservatism, which
our method allowed us to measure in individuals on single problems. While most people tended to
disregard the base rate, they did so less when it was explicitly presented. Moreover, there was no
apparent systematic relationship between base rate neglect and conservatism within individuals.
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