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Stochastic search algorithms can tell us who to trust (and why)
Manikya Alister (alisterm@student.unimelb.edu.au)
Andrew Perfors (andrew.perfors@unimelb.edu.au)
School of Psychological Sciences, University of Melbourne

Abstract
Relying on information from other people (social testimony)
is essential for efficiently learning and reasoning about the
world. However, determining who to trust is often challeng-
ing. In this paper, we argue that trust in social agents (i.e.,
those providing testimony) can be evaluated by assessing how
optimally they have acquired their knowledge. Building on
theories that describe knowledge acquisition as a stochastic
search through a space of hypotheses, we present a framework
which yields predictions about which agents will provide bet-
ter testimony (because they are more likely to have uncovered
higher-probability hypotheses) in different contexts. This ap-
proach allows us to jointly predict how the quality of testimony
is affected by 1) features of the agents themselves, like their
expertise; 2) consensus among multiple agents; and 3) features
of the topic and hypothesis space, like its knowability. We
present initial simulations demonstrating how even a basic im-
plementation of our framework yields insight into which types
of agents and topics are more likely to result in accurate testi-
mony (and why). We conclude by discussing how this prelim-
inary research might be extended to address more complicated
social reasoning scenarios. Keywords: social reasoning, trust,
exploration, persuasion, search

Introduction
When deciding what to believe, we often look to other peo-
ple. Our reliance on social testimony is largely adaptive be-
cause it allows us to learn efficiently in the face of intractable
amounts of data which we often do not have the expertise or
ability to access firsthand. However, effective social learn-
ing requires knowing how to trust: trusting the wrong people
can lead to disastrous outcomes, and lack of societal consen-
sus about who to trust are one of the roots of problems such
as extremist political movements, denigration of the value of
expertise, and ideological polarisation.

In this paper, we propose that social reasoning can be pro-
ductively viewed as reasoning about the search processes of
other agents. Drawing from theories that conceptualise learn-
ing as the process of searching for knowledge, we can un-
derstand an agent’s chances of arriving at the “ground truth”
in terms of how effectively it is able to search the space of
possible hypotheses. This conceptual lens permits us to map
features of social informants and reasoning topics to features
of stochastic search algorithms and hypothesis spaces – and,
in so doing, enables us to apply insights from the latter to
the former. In that vein, we present simulations that demon-
strate how this approach can help us understand which agents
should be trusted most, in which contexts, and why.

Background
We focus here on three factors that previous experimental re-
search has shown are highly influential in social reasoning.
First, people care about the credibility of other agents: we
are more persuaded by experts as well as those without obvi-
ous conflicts of interest or bias (Orchinik et al., 2024; Sim-
monds et al., 2023). Second, people care about consensus
when reasoning about specific claims: we find it more persua-
sive when multiple others endorse a claim than when a sin-
gle person does so or there is disagreement (for reviews, see

Mercier & Morin, 2019; Oktar & Lombrozo, 2025). Third,
people care about features of the reasoning topic itself,
independent of expertise or topic familiarity (Richardson &
Keil, 2022): we are less likely to be persuaded by others when
the claim is less likely to have a ground truth in the first place,
as in the case of opinions (Alister et al., 2025).

Although these factors are important to social reasoning,
our theoretical understanding of why they are important (as
well as how they interact with each other) is limited. This is
partly because existing computational models have yet to in-
corporate all of these aspects into a unified framework. Some
normative models explain why a consensus should be per-
suasive (e.g., Montgomery et al., 2024; Oktar & Lombrozo,
2025; Romeijn & Atkinson, 2011), but they primarily focus
on how opinions are aggregated (e.g., the proportion of re-
sponses for vs. against, or the distribution of responses on a
continuous scale). There has been less consideration of how
features of the agents who contribute to the consensus affect
its persuasiveness (or should do so, or why). Although some
models consider some features like the reliability of agents or
the independence of their testimony (Harris et al., 2016; Mad-
sen et al., 2020; Pilditch et al., 2020; Whalen et al., 2018),
there is less consideration of other influential factors like the
biases of the agents or the diversity of ideas considered by
the agents.The common thread is that these models overlook
how social reasoning is shaped by the knowledge acquisition
processes of the agents who are providing testimony – a key
theoretical consideration for understanding social influence.

Another shortcoming of existing models is that they focus
more on features of the agents than the reasoning topic itself.
For instance, we know that the persuasiveness of social testi-
mony varies substantially based on whether the topic is likely
to have a ground truth, regardless of the reasoners’ prior be-
liefs (Alister et al., 2025). Although you may not personally
know whether there was an armed robbery at the local shop-
ping centre, there is a ground truth about what exactly hap-
pened and it is highly probable that someone knows it. Con-
versely, subjective claims like “cats are better pets than dogs”
are generally not viewed as having an objective truth; they
are largely a matter of individual preference. The importance
of knowability is evident in the fact that one disinformation
tactic is to reduce the extent to which a topic is perceived
as knowable; for example, to discredit the fact that there is
a scientific consensus on climate change (Readfearn, 2022).
However, current models of social reasoning neither incorpo-
rate knowability nor explain how (and why) it should matter.

Social reasoning as reasoning about search
In the previous section, we highlighted three key limitations
of existing computational models of social reasoning. They
do not jointly incorporate, or provide an explanation of, 1)
the features of individual agents that indicate their ability to
know the truth; 2) how people integrate testimony from multi-
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Figure 1: Framework overview. People decide how much they can trust other agents by taking into account 1) features that indicate how
the agents acquired their knowledge (their search process); 2) how many other agents agree, and what the features of those agents are; and 3)
indications that reflect how knowable the topic is or how easy the space is to search.

ple agents who might vary on these features; and 3) the nature
of the topic being reasoned about, like its knowability (the
extent to which a ground truth exists). Our framework ad-
dresses these limitations by considering how agents acquire
their knowledge.

Our work emerges out of a popular theoretical perspec-
tive in cognitive science (e.g., Gopnik et al., 2017; Ullman
et al., 2012) and philosophy of science (e.g., Alexander et
al., 2015) which suggests that people acquire knowledge by
exploring over the space of possible ideas or explanations. In
other words, these theories describe knowledge acquisition as
a stochastic search through a set of hypotheses, which people
encounter and evaluate over time. This perspective has much
in common with computational search algorithms, which re-
semble aspects of how people explore and test hypotheses
during the course of learning (Bonawitz et al., 2014; Bram-
ley et al., 2017; Giron et al., 2023). These algorithms move
within hypothesis spaces much like people explore ideas, dis-
carding less promising ones and retaining better ones.

Viewing knowledge acquisition as a search process sug-
gests that both the social informant’s search strategy and the
structure of the reasoning topic should shape how effectively
an informant can arrive at the truth. Just as stochastic search
algorithms vary in their efficiency and convergence depend-
ing on features of the algorithm and the structure of the hy-
pothesis space, we suggest that agents vary in their ability
to uncover the truth depending on factors like their cognitive
biases, resources, and the nature of the topic. For instance,
knowability could reflect how the hypotheses in a space are
distributed, with certain distributions being harder to search
and therefore the truth of that topic more difficult to know
(see also, e.g., Alexander et al., 2015).

To summarise, our framework suggests that people should
decide how much to trust other agents by attending to features

that reflect their search process. Therefore, people should be
more persuaded by agents whose search is more likely to have
uncovered the truth.

Specifically, as outlined in Figure 1, people need to con-
sider 1) what features of that agent indicate their individ-
ual ability to search the space (e.g., their expertise, bias); 2)
whether and how multiple agents have converged on the same
hypothesis (e.g., consensus) and 3) what features of the rea-
soning topic affect how easy it would be to search the space
of hypotheses (e.g., knowability). Table 1 lists some spe-
cific examples of these three aspects of social reasoning and
describes how they may map onto features of search algo-
rithms. Because our work is still in its infancy, this space of
possibilities is (ironically) not yet fully explored. The table
demonstrates the potential of our framework in formalising
and predicting whose dynamics can be understood through
modelling and then empirically tested on real-world phenom-
ena. In the next section, we conduct some basic simulations
that formalise some of these features and show how they can
be used to make predictions about social reasoning.

Simulations
In this section, we demonstrate how our framework can be
used to make normative predictions about which features of
agents and hypothesis spaces result in a higher likelihood of
uncovering better hypotheses and therefore, how much we
should trust agents in different contexts. These simulations
are intended as a proof of concept, showing how even a rel-
atively simple hypothesis space and search algorithm make
novel predictions and add conceptual clarity about the differ-
ent factors that may matter in social reasoning (as well as how
they might interact). In the general discussion, we will con-
sider how our preliminary work might be extended to model
more sophisticated reasoning and more complex scenarios.
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Table 1: Mapping features of social reasoning onto features of search. This is not an exhaustive list of all possible features,
nor even necessarily the most accurate mappings; however, the range of features and the potential insight derived from consid-
ering mappings like these demonstrate the utility of conceptualising social reasoning in this way. Each feature is grouped by
how it maps onto the broad aspects of social reasoning our framework is trying to integrate (see Figure 1).

Feature of social reasoning Parameter Description

In
di

vi
du

al
A

ge
nt

1 Expertise Number of iterations or
samples

All else being equal, agents who search longer end up considering
more different hypotheses. In this way, these agents “know” more,
i.e., have more expertise.

2 Bias Probability of accepting
samples in different areas
of space

Some people may be more likely to accept or reject a hypothesis
based on some factor other than objective quality (e.g., similar-
ity to current hypothesis or performance according to some other
metric). Unbiased agents who choose hypotheses based solely on
relative probability can search the space better.

3 Diversity of ideas that
are considered

Step size Some people evaluate a wide variety of different ideas, and some
do not. Smaller steps mean that at each iteration, an agent only
sees hypotheses that are similar to what they already believe.
Larger steps allow for greater exploration but may miss more fine-
grained changes in hypothesis quality.

4 Exploration/exploitation
over time

Cooling parameter People vary in their willingness to accept any hypotheses (ex-
plore), compared to only accepting good ones (exploit). Good
search often involves more exploration in the early stages (i.e.,
childhood) and more exploitation later on (i.e., adulthood).

5 Scepticism Acceptance rule (i.e.,
probability of accepting
new hypotheses)

Some people are very sceptical and will reject nearly every new
idea. Others are much less sceptical and are highly likely to accept
new hypotheses, even if lower in quality. Trustworthy reasoning is
balanced, neither accepting nor rejecting too much.

C
on

se
ns

us

6 Consensus from multiple
sources

Convergence of multiple
chains

People sometimes agree with each other about which idea is right.
When multiple agents settle on the same hypothesis, this agree-
ment can be more indicative of ground truth.

7 Independence among
multiple sources

Starting point of chains
and diversity of search
paths

People vary in their initial beliefs as well as the directions they
investigate, which influences their search path. If multiple agents
with different paths arrive at similar conclusions, that can be taken
as evidence in support of that conclusion.

To
pi

c

8 Knowability: extent to
which ground truth exists

Variation in hypothesis
probability

For some topics, some hypotheses are obviously more correct than
others: the sky is blue, not red. In these, the ground truth is more
apparent and agents will find it easier to converge to the correct
hypothesis. In topics where all hypotheses have similar likelihood,
agents will not be as likely to converge to the correct conclusion.

9 Knowability: similarity
of best hypotheses

Spatial correlations of
hypotheses

For some topics, better hypotheses may cluster together because
they are close in the underlying representational space. In other
topics, there are many local minima, and good hypotheses may
be far from each other. It is easier for agents to identify the best
hypothesis when the correlational structure assists search.

Method
Hypothesis spaces. To model each hypothesis space, we
used a 10×10 grid where each of the 100 cells represented
a unique hypothesis. While this simplifies the complex,
multidimensional hypothesis spaces that real-world reason-
ing likely involves, it resembles how they have been opera-
tionalized in similar studies examining how people acquire
knowledge through search (e.g., spatially correlated multi-
armed bandit tasks; see Giron et al., 2023; Witt et al., 2024)
and allows us to modify theoretically interesting features of
the space while maintaining reasonable tractability.

The likelihoods associated with each hypothesis were gen-
erated using a Gaussian process with a squared exponential
kernel defined by two key parameters, as in Figure 2 (rows
8 and 9 of Table 1 illustrate how these parameters map onto
real-world hypotheses). The first, spatial correlation, controls
the smoothness of the hypothesis space: how similar nearby
hypotheses are to each other in likelihood. The second, vari-
ance, governs the relative difference in likelihoods across the
space: how much better good hypotheses are than bad hy-
potheses. The likelihood of each hypothesis was normalised
such that the sum of all likelihoods was one.
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Figure 2: Example hypothesis spaces demonstrating how variance
and spatial correlation affect the distribution of likelihoods in the hy-
pothesis space. Spatial correlation (rows) captures the smoothness of
correlations between nearby hypotheses, while variance (columns)
captures how different the best hypotheses are from the worst.

Search algorithm. Consistent with previous research (e.g.,
Ullman et al., 2012), agent search behaviour was modelled

using Metropolis-Hastings Markov Chain Monte Carlo. This
algorithm was chosen for its flexibility in capturing the fea-
tures described in Table 1, its adaptability to various discrete
search scenarios, and its straightforward implementation.

Starting from a randomly selected initial hypothesis, the
MH-MCMC algorithm proposes new hypotheses by sampling
a position within 1 to 5 cells in any direction from the current
one. At each step, the algorithm accepts proposed hypothe-
ses with higher likelihoods unconditionally, while those with
lower likelihoods are accepted probabilistically based on the
difference in likelihood between the proposed and current hy-
pothesis. This rejection rule means that agents are less likely
to accept a lower-quality hypothesis as the difference in like-
lihood between it and the current hypothesis increases. This
stochastic acceptance mechanism captures the noisy evalu-
ation of hypotheses observed in real-world reasoning, where
individuals cannot perfectly determine the quality of hypothe-
ses. The process is repeated for a fixed number of iterations,
simulating each agent’s search over time.

For ease of interpretation, we assume that the currently ac-
cepted hypothesis at any iteration represents the agent’s belief
about the true hypothesis at that time, even if that agent had
previously accepted hypotheses with higher likelihoods. The
movement of the algorithm from one hypothesis to another
thus captures the agent updating their beliefs about the true
hypothesis. Rejecting a proposed hypothesis corresponds to
the agent considering (but ultimately disbelieving) an alterna-
tive hypothesis. We also assume that each agent’s testimony
reflects the likelihood of the hypothesis they have accepted.

Simulation Procedure We conducted 2,000 simulations,
each with a unique hypothesis space which was generated
based on parameters controlling spatial correlation and vari-
ance. The values of these parameters were selected using
Latin hypercube sampling with fixed ranges (both between
0.1 & 3).1) Each landscape was searched by 20 “agents”
(chains in the search algorithm) for 100 iterations. This
resulted in 4,000 simulated agents and 4,000,000 observa-

1These ranges were chosen because they produced reasonable
variation in the distribution of hypothesis quality across simulations.

Figure 3: Role of hypothesis space in agent testimony quality.
We ran 2000 simulations, each with a different hypothesis land-
scape; each dot shows the median likelihood of all agents in a given
landscape, collapsed across every level of expertise (iteration) . The
colour of the dots reflects the quality of that agent’s testimony (the
likelihood of its final hypothesis at the end of 100 iterations). On
the y axis, the top row shows the median testimony quality and the
bottom row shows the rank of the testimony (a rank of 1 indicates
that the final hypothesis of that agent has the highest likelihood in
the space, so lower rank is better). As the variance of hypotheses
in a landscape increases and the correlation of hypotheses decreases
(x axis), the median quality of testimony increases (top). However,
only spatial correlation affects the ability to uncover the best hypoth-
esis (better performance with lower spatial correlation (bottom).

tions. This procedure therefore allowed us to see simulate
how the average likelihood of an agent’s testimony varied as
a function of the hypothesis space (knowability), how long
the agent has searched for (expertise), and how many other
agents agreed (consensus).

Results & Discussion
Previous research indicates that social testimony may be more
persuasive for topics that are more inherently knowable, in
which the ground truth is easier to uncover (Alister et al.,
2025; Richardson & Keil, 2022; Yousif et al., 2019). How-
ever, it is still unclear precisely what knowability means in
the context of social reasoning, as well as why knowability
should matter. Our approach suggests two possible dimen-
sions of knowability as it relates to the structure of hypoth-
esis spaces (see also Alexander et al., 2015). First, it could
pertain to the variance of hypotheses in a space, with higher
variance indicating a greater difference in quality (likelihood)
between the best and worst hypotheses. Second, knowabil-
ity could also pertain to the extent to which good hypotheses
cluster together (i.e., their spatial correlation). The top row of
plots in Figure 3 suggest that both variance (left column) and
spatial correlation (right column) affect the likelihood of the
final hypothesis of each agent (i.e., their testimony, y axis),
collapsing across how long each agent has searched for. The
effects are in opposite directions: as variance increases, the
testimony has higher likelihood; but as spacial correlation in-
creases, the testimony has lower likelihood.

Is testimony more convincing in knowable contexts be-
cause it’s easier to find the best hypotheses, or simply be-
cause the best hypotheses have a higher average likelihood?
We can examine this by analysing the ordinal quality of hy-
potheses; ranking each hypothesis so that those with higher
likelihood have lower rank yields a measure of relative hy-
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Figure 4: Role of expertise, consensus, and knowability on agent
testimony quality. On the y axis, the top row shows the median tes-
timony quality and the bottom row shows the rank of the testimony
(a rank of 1 means that the final hypothesis of that agent has the
highest likelihood in the space; lower rank is better). Expertise is
defined by the number of iterations they have searched (x axis) and
consensus as what percent of agents agreed on the best hypothesis.

pothesis quality (rank 1 is best, rank 100 is worst). As shown
in the bottom half of Figure 3, agents are more likely to un-
cover the best hypotheses when spatial correlation is lower.
However, hypothesis variance does not appear to matter.

Intuitively, one might think that having higher spatial cor-
relation would increase the probability of finding better hy-
potheses, since it would provide a gradient that the search
algorithm can follow. Our simulations suggest that this in-
tuition may not be the case, at least when search processes
resemble those of our simulated agents and the hypothesis
spaces have the character of ours. One reason we observed
this is that higher spatial correlation reduces the difference in
quality between near hypotheses, making the algorithm more
likely to accept new hypotheses that were worse than the first.
This suggests that high spatial correlation might be more ben-
eficial for agents who can only take small steps away from
their current position or who are less willing to accept lower-
quality hypotheses. It might also have different effects in a
much larger or more structured hypothesis space – a possibil-
ity we consider in more detail in the discussion.

What about the features of the agents themselves? We ex-
plored this in our simulation by analysing two possible fea-
tures. First, we consider the expertise of the agent, defined as
the number of iterations they searched the hypothesis space
for. Second, we evaluate the consensus of testimony, defined
as the proportion of other agents within the same hypothesis
space that converged to the same hypothesis on any given it-
eration. Perhaps unsurprisingly, our simulations indicate that
testimony is higher quality when agents have more expertise
and there is more consensus between different agents (Figure
4). While these are not novel insights, it is reassuring that our
approach yields findings that are consistent with existing re-
search (Alister et al., 2022; Connor Desai et al., 2024; Schulz
et al., 2023; Simmonds et al., 2024). Moreover, while the pre-

dictions themselves may not be surprising, our framework of-
fers a novel explanation for why these factors should matter:
expertise is important because it reflects a longer search of
the hypothesis space, and consensus is important because dif-
ferent agents are more likely to have converged on the same
hypothesis when the likelihood of that hypothesis is high.

Our simulations also allow us to predict how these factors
trade off against each other, which would be difficult without
our framework. How is the value of expertise and consen-
sus affected by knowability? We addressed this by conduct-
ing simulations in which we collapsed our two dimensions of
knowability into a single scale, where lower correlation and
higher variance corresponded to higher knowability. As the
top half of figure 4 shows, the effect of both expertise and
consensus depends substantially on knowability; both mat-
ter most when the topic is more knowable. These findings
are consistent with Alister et al. (2025), who found that peo-
ple are less convinced by a consensus when the topic is less
knowable. Our framework suggests that this may happen be-
cause in less knowable contexts, a consensus is not as strong
an indication of high quality hypotheses. Given that infor-
mants in Alister et al. (2025) were always experts, our simu-
lations also suggest that their results may have been less pro-
nounced if the informants had lower expertise: a prediction to
be tested in future work. The bottom half of Figure 4 suggests
that knowability does not matter when considering only the
relative rank of hypotheses, rather than their raw likelihood.
These results suggest that social testimony may be less per-
suasive in less knowable environments because all hypothe-
ses are weighted similarly, so even if an agent has technically
uncovered a better hypothesis than the learner (in terms of
rank), it is unlikely to be very different in quality to what the
learner already believes.

General Discussion
In this paper, we suggest that social reasoning can be concep-
tualised as reasoning about how other agents acquired their
knowledge. Consistent with the idea that knowledge acquisi-
tion can be described as a stochastic search through a hypoth-
esis space, we propose that modelling the search processes of
other agents using search algorithms yields insight into the
factors that affect the quality of their testimony.

As a proof of concept, we conducted a simulation study to
demonstrate how this approach generates predictions about
the role of: 1) features of agents that indicate their credibil-
ity; 2) the presence of agreement between multiple agents
(consensus); and 3) the knowability of the topic. Although
existing models capture some of these factors (e.g., Mad-
sen et al., 2020; Oktar et al., 2024), our framework is, to our
knowledge, the first to incorporate all three.

In future research we plan to extend these basic simulations
to more sophisticated situations. For example, we modelled
informants as completely unbiased and rational in the sense
that they always accepted better hypotheses and evaluated hy-
potheses solely based on their objective likelihood. In reality,
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however, people have biases that influence which hypothe-
ses they consider or accept. For instance, if the hypothesis
space were conceptualised as representing different political
dimensions, someone on the far left might be less likely to
accept a hypothesis aligned with the far right, even if it had a
high likelihood (and vice versa). This kind of bias could be
integrated into stochastic search algorithms by incorporating
a prior distribution over the hypothesis space.

Another important consideration is that we modelled
agent’s acceptance rate as constant over time. However, this
does not align with how human knowledge acquisition is typ-
ically described in developmental research: children often
have a tendency to explore poorer hypotheses rather than ex-
ploit known good ones, a tendency that decreases with age
(Bonawitz et al., 2014; Gopnik et al., 2017). This exploration
is thought to be evolutionarily adaptive, as being too biased
towards good hypotheses could result in being stuck in a lo-
cal maximum, thus preventing the discovery of even better
ones. Notably, this behaviour parallels simulated annealing
algorithms (Kirkpatrick et al., 1983), which use a tempera-
ture parameter that controls the balance between exploration
and exploitation and has been used to model developmental
changes in search behaviour (Giron et al., 2023).

Another way that our simulations were unrealistic is that
they assumed informants do not have any memory or capac-
ity to form a representation of the hypothesis space. Future
research could address this limitation by integrating search al-
gorithms with more advanced approaches like Gaussian pro-
cess models (e.g., Giron et al., 2023; Witt et al., 2024). These
models form a structured representation of the hypothesis
space based on past samples, and would enable us to better
capture the complexity of human reasoning.

Most stochastic search algorithms, including those in our
simulations, assume that each agent searches the hypothesis
space independently. Of course, in the real world, people of-
ten communicate with one another, which can have differ-
ent effects depending on the nature of the coordination. For
instance, the quality of the final hypotheses might increase
if agents coordinate to search different areas of the space or
identify parts of the space that are unlikely to pay off. Con-
versely, quality might decrease if agents systematically ig-
nore some parts of the space because they think others have
already searched it or their ingroup tells them to do so. Peo-
ple do pay attention to the independence of sources when up-
dating beliefs, but exactly how and when is a complicated
story (Richardson & Keil, 2022). Incorporating communica-
tion into our framework is one way to better understand the
complex mix of factors that shape when communication is
useful and when it is not. Such communication mechanisms
already exist in some search algorithms, such as in particle
swarm optimisation (Kennedy & Eberhart, 1995).

In our simulations, we demonstrated how the quality of
agent testimony was affected by two features of a small, 2D
hypothesis space: spatial correlation and hypothesis variance.
Of course, hypothesis spaces have many more features that

might affect how easy it is to uncover good hypotheses. For
example, larger hypothesis spaces with a long distance be-
tween local maxima – or more structured hypothesis spaces
where there are long sequences or clumps of high quality hy-
potheses – might result in qualitatively different patterns (e.g.,
agents being more likely to get stuck in local maxima; mul-
tiple agents converging on local maxima; or agents splitting
between multiple distant local maxima, as in belief polari-
sation). Here, we have only considered discrete hypothesis
spaces, but the same principles could still apply in a continu-
ous space; for instance, where hypotheses are represented as
vectors in a high dimensional space (Piantadosi et al., 2024).

Another avenue to consider is contexts where the hypoth-
esis space is dynamic. What if the distribution of hypotheses
in a space change over time, such that hypotheses that previ-
ously had high likelihood no longer do? Or what if new max-
ima emerge in parts of the space that previously contained
only low-likelihood hypotheses? Dynamic hypothesis spaces
may reflect the fact that utility of different hypotheses change
over time as the environment changes or the context evolves.
If a reasoner assumes that a topic corresponds to a dynamic
hypothesis space, we predict that the reasoner should have
less faith in experts who have spent a long time searching the
space: after all, areas that the expert searched and rejected
previously may now have high value.

A key assumption of our framework is that the agent’s tes-
timony is always what they believe to be true (and the rea-
soner knows this). It therefore does not currently account for
situations where a reasoner believes an agent is deliberately
misleading or outright lying. This sort of reasoning is an im-
portant factor in the real world, and has been the focus of
modelling work (e.g., Alister et al., 2023; Goodman & Frank,
2016; Shafto et al., 2014). While in principle the framework
could be extended in this way, it fills a vital gap even with-
out this extension; honesty alone is not sufficient to persuade
someone unless there is some reason to believe that the agent
actually knows the truth in the first place.

Our framework is normative as it offers an explanation for
what kinds of informants should be more persuasive given
features that indicate the quality of their knowledge acquisi-
tion (search through a hypothesis space). Although we qual-
itatively replicate and explain some existing findings, more
work needs to be done to better understand how well this
framework applies to real human behaviour. Regardless, we
suggest that it provides a useful new way of formalising con-
structs of social reasoning like expertise, bias, or knowabil-
ity. In doing so, we not only are able to more precisely define
what these concepts might mean but also explore more fully
how they trade off against each other and generate falsifiable
new predictions. This includes features in Table 1 as well as
others yet to be explored. Future experimental work will be
useful for identifying where human social reasoning diverges
from our model predictions and in such cases, could also mo-
tivate interventions to promote greater belief in sources who
are more likely to know the truth.
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