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A B S T R A C T   

When people use samples of evidence to make inferences, they consider both the sample contents and how the 
sample was generated (“sampling assumptions”). The current studies examined whether people can update their 
sampling assumptions – whether they can revise a belief about sample generation that is discovered to be 
incorrect, and reinterpret old data in light of the new belief. We used a property induction task where learners 
saw a sample of instances that shared a novel property and then inferred whether it generalized to other items. 
Assumptions about how the sample was selected were manipulated between conditions: in the property sampling 
frame condition, items were selected because they shared a property, while in the category sampling frame 
condition, items were selected because they belonged to a particular category. Experiment 1 found that these 
frames affected patterns of property generalization regardless of whether they were presented before or after the 
sample data was observed: in both cases, generalization was narrower under a property than a category frame. In 
Experiments 2 and 3, an initial category or property frame was presented before the sample, and was later 
retracted and replaced with the complementary frame. Learners were able to update their beliefs about sample 
generation, basing their property generalization on the more recent correct frame. These results show that 
learners can revise incorrect beliefs about data selection and adjust their inductive inferences accordingly.   

1. Introduction 

People frequently rely on samples of existing evidence to make in
ferences, predictions and decisions. For example, a person deciding 
where to stay on holiday may sample online recommendations of “hotels 
with more than 3-stars”. However, our beliefs about such samples can 
change over time as new information comes to light. Our holiday 
planner may have initially believed, for example, that the star ratings 
represented a consensus measure of hotel quality as reported by previ
ous guests. Later she learns that these ratings are often generated by the 
hotels themselves, as a form of self-promotion (Pitrelli, 2022). Under 
these circumstances, one might expect the holiday planner to revise 
their hotel choices even if they receive no new hotel recommendations. 

Research on inductive inference has revealed much about how we 
make inferences from samples of evidence (see Feeney, 2018 for a re
view). However, relatively little attention has been given to how (or 
whether) inferences change in light of new information about how the 

samples were generated. The answer to this question bears on issues like 
what information is encoded during the inference process and whether 
people can revise their inferences when they discover that their previous 
beliefs about the sampling process were incorrect. Such issues are 
important in information-rich environments where people often receive 
conflicting reports about how a sample of evidence was generated 
(Lewandowsky, Ecker, Seifert, Schwarz, & Cook, 2012). The focus of this 
paper is on exploring this question. 

1.1. Samples and sampling assumptions in induction 

In studies of property induction, learners see a sample of instances 
that share some novel property (e.g., animals that have a particular type 
of blood), and use this to infer how far the property generalizes (e.g., 
whether other animals that haven't been observed also have that type of 
blood). A long tradition of induction research, dating back to the seminal 
works of Rips (1975) and Osherson, Smith, Wilkie, Lopez, and Shafir 
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(1990), emphasizes the role of the sample contents in the inference pro
cess. Such work has revealed important principles that guide how we 
generalize from samples of evidence to a broader population. These 
include the similarity of the sample to the target of the inference; 
learners are more likely to generalize to targets that are similar to the 
instances observed in the evidence sample (Hayes & Thompson, 2007; 
Osherson et al., 1990). Another important principle is sample diversity; 
learners are more likely to infer that a property generalizes to other 
category members, after observing that a diverse sample of instances (e. 
g., horses, mice and dolphins) have the property as compared to a less 
diverse sample (e.g., horses, zebras, donkeys) (Hadjichristidis, Geipel, & 
Gopalakrishna Pillai, 2022; Heit & Hahn, 2001; Liew, Grisham, & Hayes, 
2018). 

These principles have been shown to be robust across a range of 
learning contexts and stimuli (see Hayes & Heit, 2018, for a review). 
They have also been shown to “scale up” to how people use samples of 
evidence to draw inferences about consequential issues such as future 
global warming (Kary, Newell, & Hayes, 2018) or medical diagnosis 
(Kim & Keil, 2003). 

Recent work, however, has highlighted another important compo
nent of the inferential process – people's sampling assumptions – their 
beliefs about how the sample was generated (Hayes, Navarro, Stephens, 
Ransom, & Dilevski, 2019; Tenenbaum & Griffiths, 2001). One line of 
research has shown that people's inferences about a given sample 
depend on their beliefs about the intentions behind sample selection (see 
Hayes, Liew, Connor Desai, Navarro, & Wen, 2023 for a review). When 
adults believe that sample contents were selected by someone with 
helpful intentions and a knowledge of the relevant domain, they are 
likely to take factors such as the size and diversity of a sample into ac
count when judging how far a property generalizes. However, the 
impact of these factors diminishes if they believe the sample was 
generated randomly (Hayes, Navarro, et al., 2019; Navarro, Dry, & Lee, 
2012; Ransom, Hendrickson, Perfors, & Navarro, 2018; Ransom, Per
fors, Hayes, & Connor Desai, 2022; Ransom, Perfors, & Navarro, 2016). 
Young children are also more likely to factor in the sample composition 
into their inferences when samples are selected by a knowledgeable 
teacher (Rhodes, Gelman, & Brickman, 2010). 

A related issue and the focus of the current work, concerns the 
impact of sampling frames – causal constraints on the sampling process 
that mean that only certain types of instances can be observed. Such 
constraints often arise because our ability to sample relevant evidence is 
limited by available time or resources. Hence some type of selective 
sampling strategy is necessary. For example, when searching for holiday 
accommodation, one could make the search more tractable by only 
examining reviews of those hotels managed by a popular hotel chain. In 
this case, the sample is subject to a category frame – inclusion of instances 
in the sample is dependent on them belonging to a particular category. 
An alternative property frame strategy would be to search according to 
some relevant property or criterion (e.g., only search for hotels with 5- 
star reviews). As detailed below, different inferences can arise from the 
same sample of evidence depending on whether the sample was believed 
to be subject to a category frame or a property frame. We see this as an 
important issue to study because many, if not most, samples of evidence 
that people encounter outside the laboratory are subject to some sort of 
selection constraint or bias (Hogarth, Lejarraga, & Soyer, 2015). 

To better understand the implications of different sampling frames, 
let us turn to an example that is closer to the scenarios used in the 
current studies. Imagine that you were tasked with discovering which 
animals on a previously unexplored island had a particular enzyme in 
their blood. Resource constraints limit the extent of exploration and so a 
sampling frame needs to be applied. Category sampling would involve 
sampling from one animal category and seeing which category members 
have the enzyme. Property sampling would involve taking an initial 
sample of animals known to have the enzyme and examining what types 
of animals were included in this sample. Crucially, the different frames 
license very different kinds of inferences (see Fig. 1 for an illustration). 

Under category sampling, discovering that most instances in a sample of 
birds have the enzyme is informative about how the property is 
distributed within that category, but tells us little about whether the 
property generalizes to other animals. The absence of instances from 
other categories in the sample is attributable to the frame. Under 
property sampling, however, the same sample data is highly informative 
for property generalization. In this case, there are no obvious restrictions 
on the categories that could have been included in the sample. The fact 
that only members of a single category appear in the sample strongly 
implies that the property does not generalize outside that category. In 
other words, under category sampling, the absence of evidence in the 
sample is not informative. Under property sampling, absence of evi
dence is evidence of absence. 

Previous research shows that many adult learners are sensitive to the 
implications of different sampling frames. When presented with a sam
ple containing members of a single category that share some property, 
those given property frame instructions are less likely to generalize the 
property to other instances than those given category frame instructions 
(Hayes et al., 2023; Hayes, Banner, Forrester, & Navarro, 2019; Lawson 
& Kalish, 2009; Ransom et al., 2022). Observing larger samples of evi
dence leads to further “tightening” of generalization under property 
sampling but has less of an effect on property sampling (Hayes et al., 
2023; Hayes, Banner, et al., 2019). 

1.2. Revising assumptions about the sampling process 

One limitation of previous research on the effects of sampling as
sumptions is that, in most cases, such assumptions are manipulated 
before the sample is observed; there has been no attempt to examine 
situations where previous beliefs about how a sample has been gener
ated need to be revised or updated. Situations that call for revision of 
initial sampling assumptions are, however, common outside the labo
ratory. For example, an investor may see advertisements from an in
vestment company featuring high-performing mutual funds, assuming 
that these were a representative sample of company products. They may 
later discover that these funds were carefully selected for the purpose of 
advertising and are atypical of the company's portfolio (Koehler & 
Mercer, 2009). Likewise, in our opening example, our holiday planner 
would have to reassess their hotel choices when they learned about how 
star ratings were actually generated. In these cases, people observe a 
sample of information that seems to fit one set of assumptions about how 
the sample data were generated, but later learn that a different sampling 
process was operating. 

Fig. 1. Example of different sampling frames applied to the same sample of 
evidence. 
Note: The Figure illustrates how category and property frames lead to different 
inferences when applied to the same sample of items that share a property. 
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A crucial question, therefore, is whether people revise their sampling 
assumptions and adjust their inferences when they receive new infor
mation about the sampling process. There is some evidence which 
suggests that people may struggle with this. Ransom et al. (2022) 
examined the impact of different sampling assumptions (e.g., intentional 
vs. random; category frame vs. property frame) on property induction 
when information about the sampling process was presented before or 
after observation of sample data. When the sampling process was 
explained before the data, contrasting assumptions affected subsequent 
inferences. For example, people presented with a property sampling 
frame before observing the data sample subsequently showed narrower 
property generalization than those presented with a category frame, 
replicating the main finding from previous studies of sampling frames 
(Hayes, Banner, et al., 2019; Lawson & Kalish, 2009). In contrast, frames 
presented after the data had less impact – there was little difference in 
patterns of generalization between category and property frames 
conditions. 

More broadly, the finding that initial sample frames have more of an 
impact on people's inferences than frames presented after a sample is 
consistent with the findings of “primacy effects” in impression formation 
(e.g., Anderson, 1965, 1973; van Overwalle & Labiouse, 2004) and the 
perseverance of initial beliefs in self- and social-perceptions (e.g., Peake 
& Cervone, 1989; Ross, Lepper, & Hubbard, 1975). Ross et al. (1975), for 
example, found that the effects of initial positive or negative feedback 
about performance on a novel task that participants completed them
selves or saw others complete, persevered despite subsequent debrief
ings that discredited the feedback. Primacy effects have also been 
reported in contingency learning, where initial evidence has a greater 
influence on causal judgments than does later evidence (Dennis & Ahn, 
2001). 

In a seminal review, Hogarth and Einhorn (1992) found that the 
effects of the order of evidence presentation on belief revision were 
complex, and depended on a range of factors, such as the amount and 
complexity of the evidence and whether judgments are made on a trial- 
by-trial basis as new evidence is encountered or after all the evidence 
has been observed. Primacy effects were most often observed when 
judgments were only required after data presentation was complete – 
which has been the procedure used in previous sampling frames studies. 

An important implication of this work is that beliefs about the 
sampling process may change the way that incoming sample data is 
encoded, but have little effect on the subsequent retrieval of sample 
data. Ransom et al. (2022) outlined several possible variants of this 
encoding-only hypothesis. For example, it may be that early in the sam
pling process, people generate competing hypotheses about how far a 
property generalizes (e.g., “only members of the category observed in 
the sample have the property”, “members of categories similar to the 
sample have the property”, “all categories in this domain have the 
property”) and update their beliefs about the likelihood of each hy
pothesis as each new sample instance is encountered. According to this 
view, the sampling assumptions that are in place before the sample is 
observed change the way the sample data are encoded in memory. 
Hence, initial sampling assumptions will dominate subsequent in
ferences from the sample – even when the original sampling assumption 
is retracted (i.e., acknowledging that the original assumption was false 
or incorrect). 

Findings from work on belief updating in a range of contexts 
including narrative comprehension (e.g., Kendeou, Butterfuss, Kim, & 
Van Boekel, 2019; Kendeou, Smith, & O'Brien, 2013; Rapp & Kendeou, 
2007) and juror decision-making (e.g., Harris & Hahn, 2009; Lagnado & 
Harvey, 2008; Shengelia & Lagnado, 2021), however, suggest that this 
view may be overly pessimistic. For example, Rapp and Kendeou (2007) 
asked participants to read stories and rate their trait impressions of 
characters at various points in the narrative. Participants' first impres
sions (e.g., that Travis was “clumsy” because he fell over repeatedly at a 
dance club) were revised when a subsequent refutation of the impression 
was encountered, especially when this refutation contained an 

alternative causal explanation (e.g., the dance floor had just been 
waxed). Similarly, Mickelberg, Walker, Ecker, Howe, and Perfors 
(2023), found that person impressions based on behavioral descriptions 
were revised when these were found to be incorrect, and that this was 
true regardless of whether the misinformation was positive or negative. 

In related work, Lagnado and Harvey (2008) presented mock jurors 
with sequentially presented evidence in fictitious criminal cases. In some 
conditions, new evidence discredited evidence presented earlier in the 
sequence (e.g., after hearing that a neighbor had seen the suspect near 
the crime scene, it was learned that the neighbor had a long-standing 
grudge against the suspect). The discrediting evidence reduced jurors' 
estimates of the suspect's guilt. Moreover, this effect was stronger when 
the discrediting information came at the end of the sequence rather than 
when it appeared in the middle of the sequence. 

Other relevant findings come from studies of the continued influence 
effect (CIE; Connor Desai & Reimers, 2019, 2023; Connor Desai, Pil
ditch, & Madsen, 2020; Ecker, Lewandowsky, Swire, & Chang, 2011; 
Johnson & Seifert, 1994). In this paradigm, an (incorrect) explanation 
for an event is given that is consistent with the observed evidence (e.g., a 
plane crash was caused by a terrorist attack), but is later retracted. 
Memory for the details of the event and its explanation are then probed. 
A common finding is that the original beliefs about the cause of the event 
persist in memory when the retraction involves a denial of the original 
explanation (see Ecker et al., 2022; Walter & Tukachinsky, 2020, for 
reviews). This continued influence can extend to inferences about the 
event that were implied but not were not included in the original 
description (Ecker et al., 2011). Crucially, however, the effects of the 
original explanation are greatly reduced when the retraction contains a 
plausible causal alternative (e.g., in the plane crash scenario, it is sub
sequently found that the plane had a faulty fuel tank) (Ecker et al., 2011; 
Ecker, Lewandowsky, Cheung, & Maybery, 2015; Johnson & Seifert, 
1994; Kan, Pizzonia, Drummey, & Mikkelsen, 2021; Rich & Zaragoza, 
2020). 

1.3. The current studies 

This library of previous work suggests that people may be able to re- 
evaluate previously observed evidence in the light of new causal ex
planations of the data generation process. That is, they may be able to 
modify their property inferences to take account of information about 
the sampling process that is encountered after the sample data have been 
observed. The current studies aimed to test this hypothesis using the 
sampling frames paradigm. 

The first step involved a re-examination of whether people can apply 
sampling frames retrospectively (i.e., after the sample data has been 
observed) when the situation incorporates real-world mechanistic or 
category knowledge. As previously noted, Ransom et al. (2022) found 
that sampling frames that were presented after the sample data had a 
much smaller effect than those presented before. However, they used 
relatively abstract stimulus materials whose category structure was 
unfamiliar to participants before the experiments: in one study, for 
example, the sample was made up of “small rocks discovered on the 
planet Sodor”, and participants were subsequently asked to make in
ferences about rocks of other sizes from that planet. Hence, it is possible 
that participants' attention was focused primarily on learning about the 
sample rather than reasoning about existing knowledge based on the 
sampling frame. 

Experiment 1 in the current series, therefore, re-examined the effects 
of presenting frames before and after the sample data using causal ex
planations of sample selection applied to more familiar (animal) cate
gories. We found that people used sampling frames to guide property 
inferences even when they were presented after the sample of evidence 
was observed. 

Experiments 2 and 3 addressed the more novel question of whether 
people could not only revise their inferences in light of additional in
formation about the sampling frame, but go further and retract a frame 
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that had been presented previously and replace it with an alternative “cor
rect” frame. The property inferences in these “frames-switch” conditions 
were compared to “no switch” conditions where the sampling frame 
remained consistent throughout learning. We predicted that if people 
were able to successfully shift between frames, then the patterns of 
generalization in the switch conditions should be based on the more 
recent correct frame rather than the original frame. 

1.4. Why it is important to understand frame shifting 

Determining whether people successfully shift between sampling 
frames is important for a number of reasons. Theoretically, this offers a 
further test of the encoding-only hypothesis of Ransom et al. (2022). 
Finding a successful retraction of an early frame – and subsequent shift 
towards inferences based on a later frame – would challenge this hy
pothesis, pointing to a role of sampling assumptions in both the 
encoding and retrieval of sample data. 

This work will also inform further development of a formal model of 
inference. Previous findings concerning the effects of sampling frames 
on inductive inference are well-captured by a Bayesian computational 
model with biased samples (Hayes, Banner, et al., 2019; Ransom et al., 
2022). Extending ideas originally proposed by Tenenbaum and Griffiths 
(2001), the model assumes that a learner's task is to decide among a set 
of hypotheses about the true extension of a property p (e.g., “only birds 
have p”, “birds and mammals have p”, “all animals have p”), based on a 
sample of exemplars from category x that have the property. As shown in 
Eq. 1, the posterior probability for each hypothesis h under a sampling 
frame s is a joint function of the base-rate probability of each hypothesis 
P(h) and the likelihood of the data being observed given the hypothesis 
and the sampling frame. An important feature of this model is that the 
likelihood function varies depending on one's sampling assumptions. 
Different likelihood functions are applied for samples subject to a 
category frame or a property frame (see Hayes, Banner, et al., 2019; 
Ransom et al., 2022 for details). In other words, the way that a learner 
evaluates the probability of rival hypotheses about property general
ization as they observe sample members, will change depending on the 
type of frame being applied. 

P(h| x, s) ∝ P(x |h, s)P(h) (1). 
The model predicts the differences in property generalization 

observed under different sampling frames. It also generates several 
novel predictions (e.g., when instances outside the sampled category are 
rare, there will be less tightening of generalization under a property 
frame). These have been confirmed in empirical work (Hayes et al., 
2023; Hayes, Banner, et al., 2019; Ransom et al., 2022). 

This Bayesian model can be characterized as a computational or 
ideal-observer model of how generalization from samples of evidence 
should proceed (Marr, 1982). This model is agnostic about when and 
how model components, like calculating likelihoods based on relevant 
sampling assumptions, occur during the course of the generalization 
process. Clarifying the impact of sampling frames during data encoding 
and retrieval will contribute towards the development of a more detailed 
process model of how learners approach the task of inductive general
ization (Tauber, Navarro, Perfors, & Steyvers, 2017). 

More generally, our tests of switching between sampling frames have 
important implications for our ability to retrospectively revise our be
liefs about sample data and its implications. If we find that participants 
are successful in switching frames, then this suggests that we can reduce 
the negative effects of exposure to biased samples by providing alter
native explanations of the evidence-generation process after the evi
dence is observed (“debunking”, see Ecker et al., 2022 for a review). 

2. Experiment 1 

This study re-examined the effects on inductive inference of sam
pling frames presented before or after a sample of evidence is observed. 
We used familiar animal categories in the observed sample and as 

inductive test items. Compared to the stimuli used by Ransom et al. 
(2022), these categories should be more familiar to participants as well 
as more coherent, in that participants will have more prior knowledge of 
the similarity of instances within a category and differences between 
categories (cf. Malt, 1995; Murphy & Medin, 1985). 

All participants viewed the same sample of evidence (small birds 
with the novel property of “plaxium blood” – see Fig. 2A) and were 
asked to judge whether the property generalized to a range of other 
types of birds and animals. Sampling frames, in the form of causal ex
planations of the sample selection process, were presented before or 
after observation of the sample. In the category sampling conditions, 
instances were selected on the basis of category membership (i.e., only 
small birds could have been observed). In the property sampling con
ditions, instances were selected because they possessed the novel 
property (i.e., only things with plaxium could have been observed). 

Previous empirical work (e.g., Lawson & Kalish, 2009), and the 
Bayesian model of inference (Hayes, Banner, et al., 2019; Ransom et al., 
2022), predict less property generalization to items outside the sampled 
category under a property frame as compared with a category frame. 
The key question was whether this frames effect would be found in both 
the frames-before and frames-after conditions. 

2.1. Method 

2.1.1. Participants 
Two hundred and eighty-one participants were recruited using the 

online research platform, Prolific (130 females, 147 males, 4 other; 
MAGE = 33.89 years, age range: 18–75). Approximately equal numbers 
were randomly allocated to one of four groups: category-frames before, 
property frames-before, category-frames after, property frames-after. 
Participants were paid £1.00 on completion. No participants were 
excluded from this or any subsequent experiment.1 

2.1.2. Procedure 
The experiment was run online using jsPsych (de Leeuw, 2015) and 

conducted through the Prolific platform. Pictures of animals used during 
sampling and test phases were originally sourced from Google Images 
and modified using Adobe Photoshop to remove background features. 
All participants were told that they were acting as researchers exploring 
the wildlife of a little-known island. They were told that there were 
many types of animals on the island and shown pictorial examples. Their 
task was to use a sample of animals to infer which animals on the island 
had ‘plaxium blood’ and which did not. 

The experiment commenced with a warm-up phase intended to 
familiarize participants with the task goals and general procedure. 
Participants were informed about a preliminary expedition which had 
collected two animals that had the novel property of plaxium blood. No 
information was provided about how the sample was collected in this 
phase. A comprehension test consisting of two multiple choice questions 
followed, with any incorrect responses returning participants to the 
initial instructions. Two sample instances (pictures of small birds) were 
then presented, one at a time. On each sampling trial, the participant 
clicked a dialogue box to view the sample instance with the text 

1 Sample sizes in the current experiments were based on several consider
ations. We followed the general design strategy for studies employing Bayesian 
data analysis suggested by Schönbrodt and Wagenmakers (2018). This involved 
collecting participant data until a desired level of conclusive evidence was 
found for the main effect of sampling frames (i.e., the difference between 
generalization ratings for category and property sampling). As suggested by 
Schönbrodt and Wagenmakers (2018), a threshold of a Bayes Factor of 6 or 
more for/against this effect was used. This general strategy, however, was 
moderated by the resources for payment of participants that were available at 
the time each study was run. Fewer funds were available at the time that 
Experiment 2 was run, resulting in smaller cell sizes. 
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‘plaxium detected’ displayed above it. Participants could view each 
sample instance for as long as they wanted, with a 2 s delay between 
each instance. After viewing the sample, a warm-up generalization test 
was presented where participants were asked to rate the likelihood of 
each of six test animals having plaxium blood. The test items varied in 
similarity to the sample category of small birds (in decreasing order, 
sparrow, pigeon, owl, emu, mouse, lizard).2 Generalization ratings were 
made using an on-screen 10-point slider scale (1 = “very unlikely” and 
10 = “very likely”). Test items appeared one at a time in a random order. 
Based on previous work (e.g., Hayes, Banner, et al., 2019), no differ
ences in generalization patterns between the experimental groups were 
expected after observing the small warm-up sample. 

After the warm-up, participants in the frames-before condition were 
given sampling frames instructions before proceeding to the main 
sampling phase. In the category-frame condition, it was explained that a 
subsequent sample would be collected by a robot with a small claw 
which meant they could only collect small birds. They were also told 
about an alternative robot with a plaxium-sensitive camera, but that this 
robot would not be used to collect the sample. In the property-frame 
condition, these instructions were reversed. They were told that the 
sample would be collected by a robot equipped with a ‘plaxium-sensitive 
camera’, which meant that it would only collect things with plaxium 
(see Fig. 2 for examples of frames instructions). Those in the frames-after 
condition were presented with the same sampling frames instructions, 
but these were presented after the main sampling phase. The wording of 
the instructions was the same for the frames-before and frames-after 
conditions, except for the use of different tenses (future for frames 
before; past for frames after). We included the description of both robots 
in the sampling frames instructions in the interests of consistency with 
instructions used in later retraction studies. Participant understanding of 
the frames instructions was checked using a multiple-choice quiz 

administered immediately after these instructions. If any question in the 
quiz was answered incorrectly the correct instructions were repeated. 

In the main sampling phase, participants were presented with 
another ten sample instances of small birds, in addition to the two small 
birds from the warm-up phase. These sampling trials followed the same 
procedure as the warm-up. Pictures remained on screen as subsequent 
sample instances were presented so that, by the end of this phase, twelve 
“plaxium positive” small birds were present (see Fig. 2A). 

The final property generalization test phase was presented either 
immediately after the completion of the main sample phase (frames 
before) or after completion of this phase and presentation of the sam
pling frames instructions (frames after). Each of six generalization test 
items appeared in random order and participants rated the likelihood of 
plaxium blood being found in each. The generalization test items were 
the same as those used in the warm-up phase. 

2.2. Results and discussion 

Bayesian approaches were used to analyze the data, carried out with 
the JASP v0.17 package (JASP Team, 2023). Such analyses have the 
advantage of quantifying the strength of evidence both in favor of dif
ferences between conditions, and of null effects. The Bayes Factor (BF) 
comparing two hypotheses is a ratio that expresses the relative proba
bility of observing the data under one hypothesis compared to another 
hypothesis. We use the notation BF10 to refer to Bayes Factors that 
support the alternative hypothesis and BF01 to refer to Bayes Factors that 
support the null hypothesis. For example, BF10 = 10 indicates the data is 
10 times more likely to have come from the alternative hypothesis than 
the null hypothesis. Conventionally, a BF between 3 and 20 represents 
positive evidence for the alternative (or null) hypotheses respectively, a 
BF between 21 and 150 represents strong evidence, and a BF above 150 
represents very strong evidence (Kass & Raftery, 1995). 

Fig. 2. The sample used in all conditions (A), category sampling instructions (B) and property sampling (C) instructions. 
Note: Frame instructions were presented either between the warm-up and main sampling phase (frame before) or after the complete sample had been observed 
(frame after). 

2 This rank ordering of the similarity of the test items to the sample category 
was established in previous work where participants gave pairwise similarity 
ratings for these stimuli (Hayes, Banner, et al., 2019). 
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Property generalization ratings were analyzed with Bayesian ana
lyses of variance, using Cauchy default priors (r = 0.707; Rouder, Morey, 
Verhagen, Swagman, & Wagenmakers, 2017).3 Recall that no sampling 
frames information was presented in the warm-up phase, and partici
pants were exposed to minimal sampling data (two small birds). Our 
analysis revealed that, in this phase, people made property inferences 
based on the similarity of test items to the sample, with more general
ization to items with high similarity (see https://osf.io/qjgxt/ for data), 
BF10 > 150. However, as expected for this phase, there was positive 
evidence against an impact of sampling frames on these inferences, BF01 
= 16.129. 

The more notable results concern property generalization ratings in 
the final test phase, which are shown in Fig. 3. These data were analyzed 
using a 2 (sampling frames condition) x 2 (frame timing) x 6 (test items) 
Bayesian mixed-model analysis of variance with repeated measures on 
the last factor. We computed Bayes Factors comparing the likelihood of 
models that included each of the main effects of the frames condition, 
frame timing and test items, and their two-way and three-way in
teractions, to equivalent models that omitted one of these effects. The 
analysis found very strong evidence of a main effect of the similarity of 
the test item to the observed sample, with more similar items receiving 
higher generalization ratings, all BF10 > 150). The analysis also found 
very strong evidence of an overall effect of sampling frames, with nar
rower generalization to test items following property sampling as 
compared to category sampling, BF10 = 3610.03 (category frame: M =
5.149; posterior 95% credible intervals 4.968–5.532; property frame: M 
= 4.381, posterior 95% credible intervals 4.202–4.556). There was also 
positive evidence that this effect interacted with test items, BF10 =

16.537. Fig. 3 shows that the effect of sampling frames on property in
ferences was most pronounced for the most novel test items (i.e., those 
with lower similarity to the observed sample). 

As suggested by the Figure, however, frame timing had little impact 
on these effects. There was weak evidence against an interaction be
tween the frame condition and frame timing, BF01 = 2.817, and positive 
evidence against a three-way interaction of frame condition, timing and 
test item, BF01 = 29.412. 

This experiment re-examined the effects of the timing of the presen
tation of sampling frames on the inferences that people draw from a 
sample of category members that share a novel property. Like many 
previous studies (Hayes et al., 2023; Hayes, Banner, et al., 2019; Lawson 
& Kalish, 2009), we found that participants factored sampling frames into 
their inferences when the frames were presented before the sample was 
observed. Generalization of a property to novel items was narrower under 
property than category sampling. Contrary to Ransom et al. (2022), 
however, we found a similar impact of sampling frames on inference 
when the frames were presented after the sample. This indicates that 
people can apply frames retrospectively to samples of evidence that they 
observe and grasp their implications for property inference. 

Our more positive findings regarding the retrospective application of 
frames are most likely due to our use of more familiar categories during 
the sampling and generalization test phases. This may have made it 
easier for participants to identify the animal category to which the 
sample members belonged. In turn, this may have facilitated under
standing of the inferential implications of the subsequent frame (e.g., in 
property sampling, that the absence of members of other categories was 
highly informative about how far the property generalizes). 

3. Experiment 2 

Having established that it is possible for people to retrospectively 
apply sampling assumptions when making property inferences, we now 

turn to the question of whether people can update these assumptions – 
replacing beliefs about how a sample was generated with a new set of 
beliefs. We examined whether people are able to make property in
ferences based on a new sampling frame that is presented after the 
sample data and contradicts an earlier frame. Learners were tasked with 
inferring the extension of a novel property (“plaxium blood”) after 
observing a sample of items (small birds) with that property. In no- 
switch conditions, a category or property sampling frame was pre
sented before the sample data and was never retracted (similar to the 
frames-before conditions in Experiment 1). In the switch conditions 
(category-to-property and property-to-category groups), an initial sam
pling frame was presented, but this frame was retracted and replaced 
with a new frame after the sample data. The crucial question was 
whether property generalization in the switch groups was based on the 
initial frame or the more recent, retracted frame. If participants can 
successfully retract and replace the old with the new frame, then 
property generalization in the category-to-property group should 
resemble that in the property-only group, and generalization in the 
property-to-category group should resemble that in the category-only 
group. 

3.1. Method 

3.1.1. Participants 
Two hundred participants (98 females, 100 males, 2 other, MAGE =

35.72 years, age range: 18–74) were recruited using the online research 
platform, Prolific. Participants were paid £1.00 on completion. Equal 
numbers were randomly allocated to four groups: category-only (no 
switch), property-only (no switch), category-to-property, property-to- 
category. 

3.1.2. Procedure 
The same stimulus materials were used for sampling phases and 

generalization tests as in Experiment 1. The experiment proceeded 
through five phases: 1) warm-up, 2) initial sampling frames instructions, 
3) main sampling, 4) second frames instructions, 5) property general
ization test. Fig. 4 summarizes the experimental protocol. 

The warm-up phase was identical to that in Experiment 1. After the 
warm-up, participants were provided with initial frames instructions 
that were similar to those used in the frames-before condition of the 
previous experiment. All groups were introduced to two robots, each 
with a function consistent with either category sampling or property 
sampling. All participants were told about each type of robot, but were 
informed that subsequent samples would be collected by only one type 
of robot (see Appendix for verbatim instructions). Those in the category- 
only and category-to-property conditions were initially told that their 
sample would be collected by the robot that could only sample small 
birds. Those in the property-only and property-to-category conditions 
were told that their sample would be collected by the robot that could 
only sample things with plaxium. A multiple-choice comprehension test 
checked participants' understanding of the task, with incorrect responses 
again returning participants to the relevant instructions.4 

The main sampling phase followed in which participants were pre
sented with another ten sample instances of small birds. After the sample 
had been observed a second sampling frames instructions phase was 
presented. Those in the no switch conditions were reminded about the 

3 Robustness tests confirmed that the main results reported for this and 
subsequent experiments were maintained when wider Cauchy priors were used 
(see https://osf.io/qjgxt/). 

4 An exploratory “no frames” baseline condition was also included in this 
experiment (n = 50). This group was given no specific information about the 
way that sample instances were collected. The aim was to examine whether 
peoples' default beliefs about the sampling process were closer to category or 
property sampling. The results, however were inconclusive with weak evidence 
for the null hypothesis when generalization ratings in this condition were 
compared to the category-only condition, BF01 = 2.155, and the property only 
condition, BF01 = 5.195 (see https://osf.io/qjgxt/ for full data and analyses). 
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relevant robot used to collect the sample. Those in the switch conditions 
were notified of a ‘mix-up’ in the information they received about the 
robot responsible for the sample data (see Appendix for details). They 
were told that the alternative robot was the actual source of the observed 
sample instances. They were told to disregard their previous conclusions 
and use this new sampling frame to inform their inductive inferences 
(see Fig. 5 for screenshots of the retraction instructions). 

To help them grasp the implications of the new frame, participants 
were presented with a brief ‘reminder’ of the sample showing the images 
of the twelve sample instances with the correct robot beside them for 10 
s. Those in the no switch conditions did not receive additional frame 
instructions, but were provided with the reminder of the sample 
(without a robot picture). A further multiple-choice comprehension test 
was given to all participants to confirm their understanding of the 
designated sampling frame. If any response was incorrect, the correct 
instructions were repeated. In the final property generalization test, 
each of the six test items appeared in random order and participants 
rated the likelihood of plaxium blood being found in each. 

After the conclusion of the experiment, as a manipulation check, 
those in the switch conditions were asked to rate the plausibility of the 
frames retraction on a 3-point scale (1 = “not at all plausible/believ
able”, 2 = “moderately plausible/believable”, 3 = “very plausible/ 
believable”). 

3.2. Results and discussion 

Property generalization ratings were again analyzed with Bayesian 
analysis of variance using Cauchy default priors. A preliminary analysis 
confirmed that, in the warm-up phase, property generalization ratings 
were influenced by the similarity of the test item to the sample, BF10 >

150, but there was positive evidence against an effect of sampling 
frames, BF01 = 3.61. 

Property generalization ratings in the final test are shown in Fig. 6. 
These data were analyzed using a 4 (sampling frames condition) x 6 (test 
items) Bayesian analysis of variance with repeated measures on the 
second factor. We computed Bayes Factors comparing the likelihood of 
models that included each of the main effects of frames condition and 
test item, and their two-way interactions to equivalent models that 
omitted one of these effects. The analysis found very strong evidence of a 

main effect of the similarity of the test item to the observed sample, with 
more similar test items receiving higher generalization ratings, all BF10 
> 150. 

The more interesting questions concerned differences in ratings be
tween sampling frames groups, which were examined through a series of 
planned comparisons, as well as possible interactions between these 
group effects with the test item factor. A comparison of ratings in the 
category-only and property-only frame conditions found positive evi
dence for a main effect of category frame, such that generalization rat
ings were generally lower under property framing (property-only: M =
4.655, posterior 95% credible intervals = 4.404–4.897) than category 
framing (category-only: M = 5.317, posterior 95% credible intervals =
5.064–5.549), BF10 = 6.658. This again replicates the frames effect 
found in the frames-before condition of Experiment 1 and previous 
studies (Hayes, Navarro, et al., 2019; Lawson & Kalish, 2009; Ransom 
et al., 2022). There was evidence against an interaction between this 
frames effect and the test item factor, BF01 = 7.464. 

We next compared ratings in the category-to-property condition with 
those in the category-only and property-only conditions. There was 
positive evidence of a main effect such that generalization ratings in the 
category-to-property condition (M = 4.587, posterior 95% credible in
tervals = 4.309–4.842) were lower than those in the category only 
condition, BF10 = 6.233. As suggested by Fig. 6, there was also positive 
evidence that this effect interacted with test item, BF10 = 5.168. In 
contrast, there was positive evidence of no difference between gener
alization ratings in the category-to-property and property-only condi
tions, BF01 = 6.901. Hence, inductive generalization in the category-to- 
property condition was based on the new property frame rather than the 
initial category frame. 

A complementary pattern was found in comparisons between ratings 
in the property-to-category condition and those in category-only and 
property-only groups. As shown in Fig. 6, there was positive evidence 
that generalization ratings in the property-to-category condition (M =
5.427, posterior 95% credible intervals = 5.159–5.672) were higher 
than those in the property-only condition, BF10 = 16.219. This effect 
interacted with test item, such that group differences in ratings were 
larger for test items with the lowest similarity to the sample, BF10 =

42.587. In contrast, generalization ratings in the property-to-category 
condition did not differ from those in the category-only condition, 

Fig. 3. Experiment 1. Mean test phase property generalization ratings in the frames before and after conditions. 
Note: In this experiment, category or property sampling frames were presented before or after a sample of small birds with plaxium. The Figure shows subsequent 
property generalization ratings to items from the same category (sparrow) and novel categories varying in similarity to the sample. There was less generalization to 
novel categories under property sampling than under category sampling in both timing conditions. 95% confidence intervals are shown for all means. 
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Fig. 4. Timeline summary of Experiment 2.  
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BF01 = 6.675. Generalization in the property-to-category condition 
appeared to be based on the new category frame rather than the initial 
property frame. 

3.2.1. Manipulation check 
The manipulation-check on the plausibility of the retracted frames 

explanations found that most participants in both the category-to- 
property condition (M = 2.2, SEM = 0.094) and the property-to- 
category condition (M = 2.1, SEM = 0.096), found the retractions to 
be at least moderately plausible, and that there was positive evidence of 
no difference in ratings between these groups, BF01 = 4.744. 

Experiment 2 examined whether people presented with a sampling 
frame before they observed a sample of evidence could shift to a new 
frame when the previous frame was said to be incorrect and replaced 
with an alternative. We found positive evidence of such switching: those 
presented with a property frame, which was subsequently retracted and 
replaced by a category frame, showed patterns of generalization that 
were more in line with Bayesian predictions about category sampling. 
Likewise, those presented with an initial category frame successfully 
shifted to a property frame. 

These data may seem surprising in the light of previous work that has 
highlighted the persistent effects of prior beliefs on belief updating in the 
light of new evidence (e.g., Hogarth & Einhorn, 1992). They also 
contrast with much of the work demonstrating the continued influence 
of initial beliefs on memory about the causes of events (e.g., Ecker et al., 
2022). It is important to note, however, that in the current studies we 
replaced an initial causal explanation of the sampling process with an 
alternative causal explanation. Work on the continued influence effect 
has shown that such causal reinterpretations of witnessed evidence are 
most likely to attenuate the effect (e.g., Ecker et al., 2011; Ecker et al., 
2015; Rich & Zaragoza, 2020). We also note that the current work goes 
beyond previous demonstrations of successful retraction of causal in
formation in the continued influence effect. In the CIE, new causal ex
planations are used to reinterpret old evidence. In the current work, the 
new frame presented after the sample led to a change in the way 
property inferences were made about members of categories that were 
not part of the sample of evidence. 

Fig. 5. Experiment 2. Frames retraction instructions for the switch conditions.  

Fig. 6. Experiment 2. Mean test phase property generalization ratings in the switch and no switch conditions. 
Note: In the switch conditions, participants were presented with either a category or property frame before observing a sample of small birds with plaxium, but this 
was retracted and replaced with the alternative frame after the sample. In the no switch condition, there was no retraction of the original frame. Generalization to 
novel items in the switch conditions reflected updating of sampling assumptions in line with the more recent, alternative frame, i.e., generalization in the category to 
property condition was similar to that in the property only condition; generalization in the property to category condition was similar to that in the category only 
condition. 95% confidence intervals are shown for all means. 
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One aspect of our belief revision procedure that deserves consider
ation is the use of an explicit instruction in the switch conditions to 
“disregard your previous conclusions and use … new information”. We 
acknowledge that such explicit instructions to replace old with new 
frames are likely to be rare in everyday learning situations. In our earlier 
investor and holiday planning examples, a new frame is unlikely to be 
accompanied by an explicit denial of the old frame. We note, however, 
that evidence from studies of the continued influence effect shows that 
mere negation or denial of an initial explanation of an event is unlikely 
to eliminate the effect of that explanation on subsequent memory (e.g., 
Ecker et al., 2011; Johnson & Seifert, 1994). Hence, the presence of our 
“disregard previous conclusions” instructions is unlikely to be the key 
factor that led to the successful frame switching observed in this study. 

The results from this experiment suggest that people show consid
erable flexibility in the way they update and apply their beliefs about 
sample selection when asked to make sample-based inferences. It should 
be acknowledged, however, that there are other aspects of the Experi
ment 2 procedure that may have facilitated this process. In particular, all 
groups, including the crucial switch conditions, were provided with a 
brief reminder of the sample data when given the frame. This reminder 
could have provided the learner with an opportunity to re-encode the 
sample data in the light of the new frame that had just been presented. In 
other words, we cannot be certain that those in the switch conditions 
were applying the new frame retrospectively to previously encoded 
sample data. 

An additional factor that may have facilitated the shift between 
frames was the presentation of both sampling frames before the sample 
was observed. The way that each of robots selected samples – based on 
category membership or having the property of interest, was explained 
to all participants in the initial frame stage. They were then told which of 
the robots selected the sample that they were going to observe. Knowing 
about the sampling alternatives from the outset may have made it easier 
for those in the switch conditions to subsequently adopt the alternative 
frame. 

Previous work on “knowledge restructuring” in category learning (e. 
g., Kalish, Lewandowsky, & Davies, 2005), for example, has shown that 
in order for people to switch from a simple category rule that leads to 
modest categorization accuracy to an optimal but more complex rule, 
they need advance knowledge of that rule. Other work on belief revision 
in scientific reasoning also suggests that having prior knowledge of 
alternative theories makes it easier to re-interpret new evidence that is 
ambiguous or is inconsistent with a given theory (Chinn & Brewer, 1998; 
Ganea, Larsen, & Venkadasalam, 2021). 

4. Experiment 3 

Experiment 3 re-examined whether people can retract and replace a 
previously presented sampling frame with a new frame presented after 
the sample data were observed. In this case, we removed two of the 
procedural features that may have facilitated switching between frames 
in Experiment 2. In this study, no reminder about the sample composi
tion was provided when the new frame was introduced. Moreover, half 
the participants were only told about a single frame before the sample 
data was presented. These participants were unaware of the alternative 
method of sampling before the data was observed. Those in the switch 
conditions were only informed about the alternative frame after seeing 
the data. 

This study was originally conceived of and run as two separate ex
periments, that successively removed features from the Experiment 2 
design (i.e., the first study removed the reminder about the observed 
sample, the second removed this feature as well as the initial explana
tion of the alternative frame). However, the designs were so similar we 
decided to combine the data from these studies. Whether an early 
explanation of the alternative sampling frame was presented was 
included as a factor in the data analyses. Combining the data from these 
studies increased the likelihood that our Bayesian analyses would yield 

conclusive evidence for or against the effects of interest (Schönbrodt & 
Wagenmakers, 2018). 

4.1. Method 

4.1.1. Participants 
A total of five hundred and sixty participants (240 females, 301 

males, 19 non-binary/other, MAGE = 37.93 years, age range: 18–76 
years) were recruited using Prolific (n = 280 in each of two experimental 
runs). Approximately equal numbers were allocated to the four experi
mental conditions. There were no exclusions. 

4.1.2. Procedure 
The procedure was very similar to Experiment 2, except that we 

removed the brief reminder of the sample that was presented before the 
final generalization test. For half the participants, we also modified the 
instructions for all frames conditions so that, at the initial frame stage, 
only a single type of frame mechanism (category or property) was 
described. In the switch conditions for these participants, the alternative 
sampling frame was only introduced at the retraction stage. 

4.2. Results and discussion 

A preliminary analysis again confirmed that there were no differences 
between sampling frames conditions in property generalization ratings 
during the warm-up phase, BF01 = 13.157. Property generalization rat
ings in the final test phase are shown in Fig. 7. These data were again 
analyzed using a Bayesian analysis of variance with the same design as in 
Experiment 2, except that we added a factor that reflected whether or not 
initial instructions about the alternative frame were included. 

We again found very strong evidence of an effect of test item simi
larity to the sample on property generalization, BF10 > 150. Comparing 
generalization ratings in the property-only and category-only condi
tions, there was very strong evidence of a frames effect, BF10 =

6613.502, with narrower generalization under a property frame (M =
4.649; 95% posterior credible interval: 4.464–4.813) than under a 
category frame (M = 5.393; posterior 95% credible interval: 
5.212–5.564). There was also positive evidence that this effect inter
acted with test item similarity, so that effect of the sampling frames was 
larger for inferences about the more novel test items (i.e., those that 
were less similar to the training sample), BF10 = 19.98. 

Fig. 7 shows that generalization ratings in the category-to-property 
condition were lower than those in the category-only condition, (M =
4.699; 95% posterior credible interval: 4.513–4. 863). There was very 
strong evidence for this difference, BF10 = 165.157. There was incon
clusive evidence of an interaction between this retraction effect and test 
item similarity, BF10 = 0.543. Generalization ratings in the category-to- 
property condition did not differ from those in the property-only con
dition, BF01 = 22.393. This indicates a shift towards generalization 
based on the final rather than the initial frame. 

Evidence of a shift from the initial to the final frame was also found in 
comparisons of the property-to-category condition with the category- 
only and property-only groups. Generalization ratings in the property- 
to-category condition (M = 5.525; 95% posterior credible interval: 
5.341–5.69) were higher than those in the property-only condition, with 
very strong evidence for this difference BF10 > 150. This effect inter
acted with test item, such that group differences were only found for 
novel test items, not for the small bird item, BF10 > 150. There was a 
trend for generalization ratings in the property-to-category condition to 
be higher than in the category-only condition, but the evidence for this 
difference was weak, BF10 = 2.933. 

There was no evidence that any of the effects reported above were 
affected by whether an explanation of the alternative sampling frame 
was included prior to the sampling phase. The strength of the evidence 
for a null effect of this factor as a main effect or an interaction, ranged 
from positive, BF01 = 4.049 to very strong, BF01 > 150. 
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In sum, we again found clear evidence of successful retraction and 
replacement of an earlier frame with a later frame. This effect persisted 
when participants were not reminded about the sample contents before 
making generalization judgments, and when they were unaware of the 
possibility of an alternative frame prior to sampling. 

5. General discussion 

A considerable body of work supports the view that inductive 
reasoning involves consideration of both the contents of an evidence 
sample and assumptions about how that sample was generated (Hayes, 
Banner, et al., 2019; Hayes, Navarro, et al., 2019; Ransom et al., 2016; 
Ransom et al., 2018; Ransom et al., 2022). The current studies reaf
firmed this general finding – showing that people were sensitive to 
constraints on the sample selection process when making sample-based 
inductive inferences. When sample members were selected because they 
had the property of interest (property sampling) and were found to 
belong to a single category, there was little property generalization to 
other categories. In contrast, when sampling was restricted to members 
from a single category (category sampling), people were more likely to 
infer that the property of interest may be present in other categories. 

Crucially, the current work also examined the novel question of 
whether people could revise their sampling assumptions when making 
property inferences – shifting from the sampling frame that was in place 
before the sample data was observed to a new frame introduced after 
sampling. Experiment 1 established that people were capable of 
applying sampling frames to their inferences regardless of whether these 
were presented before or after sampling. Experiments 2 and 3 found 
strong evidence that people can revise their beliefs about the sampling 
process when initial beliefs were retracted. In both of these studies, 
people were successful in switching from an initial property frame to a 
category frame – shifting from narrow generalization of a novel property 
to broader generalization. Likewise, people also successfully switched 
from a category to a property frame – shifting from broad to narrow 
generalization. 

These studies reinforce the crucial role of people's beliefs about the 
sampling process in how they draw inferences from a sample of evi
dence. A key novel contribution, however, is highlighting how flexibly 
these beliefs can be applied. People were sensitive to retractions of old 
frames which were found to be incorrect, replacing these with new 

frames presented after the sample was observed. These findings repre
sent a significant advance on previous work, where information about 
the sampling process has typically only been presented before the 
sample remains unchanged over the course of learning. 

Contrary to the findings of Ransom et al. (2022), the current work 
suggests that sampling assumptions can affect the retrieval of previously 
observed sample data, as well as the way that it is encoded. In Experiment 
1, frames that were only learned about after the sample data had a 
similar impact on property inferences to those observed before the data. 
This suggests that, in the frames-after case, the sample data were stored 
in “raw” form (i.e., without a specific frame being applied) and then 
retrieved from memory when the frame was presented and final 
generalization judgments were required. A similar process may have 
operated in Experiments 2 and 3, with the sample data stored separately 
from the initial sampling frame. The frame was then only applied to the 
sample for final generalization judgments. In the switch conditions, this 
was the more recently presented frame. An alternative possibility is that, 
in the switch conditions, the initial frame may have affected the way the 
sample was encoded and represented, but this representation was 
revised in the light of the new frame. Differentiating between these 
alternative accounts of how sample data are represented and combined 
with sampling frames information is an important goal for future work. 

Our findings concerning the impact of causal explanations of the 
sampling process on property generalization are in line with previous 
accounts that have highlighted the important role of causal knowledge 
in inductive reasoning (e.g., Hayes & Thompson, 2007; Medin, Coley, 
Storms, & Hayes, 2003; Rehder, 2017). What is novel about the current 
work is that it shows that people can switch between different causal 
explanations of sample generation, with appropriate shifts in inferences 
based on the sample. 

More broadly, our findings are consistent with previous demonstra
tions of updating of beliefs in domains such as narrative comprehension 
(e.g., Kendeou et al., 2019) and forensic decision-making (e.g., Lagnado 
& Harvey, 2008). In line with this work, we have shown that people can 
re-interpret sample evidence based on information received after the 
sample is observed. We believe that a key element in such updating is the 
provision of a new explanation of data generation that is just as, or more 
coherent, than a previous explanation (cf. Thagard, 2008). In this re
gard, our findings of a successful switch between sampling frames could 
be seen as analogous to conceptual change from an initial explanatory 

Fig. 7. Experiment 3. Mean test phase property generalization ratings in the switch and no switch conditions. 
Note: As in the previous study, generalization to novel items in the switch conditions reflected updating of sampling assumptions in line with the more recent, 
alternative frame, i.e., generalization in the category to property condition was similar to that in the property only condition; generalization in the property to 
category condition was similar to that in the category only condition. 95% confidence intervals are shown for all means. 
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theory of the observed data to a new theory (e.g., Carey, 2009; Chinn & 
Brewer, 1998; Vosniadou, 2013). 

5.1. Implications for formal models of inductive inference 

The Bayesian model developed by Hayes, Banner, et al. (2019), ex
plains property inference by calculating the conditional probabilities of 
different hypotheses about how far a property generalizes, given the 
sample data. Property and category sampling frames are implemented 
via different likelihood functions. The model makes no commitment to 
when these likelihood functions are evaluated. In that respect, the model 
is compatible with both the Ransom et al. (2022) results and the current 
findings. 

If the ultimate goal, however, is to develop a process model of 
inference, then we need to incorporate assumptions about when and 
how sampling frames affect the way that sample data is represented and 
used. One possible direction is to formalize models of the relationships 
between sampling frames and sample data in terms of causal Bayes nets. 
This approach can capture and model inferences from samples that are 
subject to different types of constraints on sample selection, including 
sampling frames (Bareinboim, Tian, & Pearl, 2014; Kemp, Navarro, & 
Hayes, 2023). It may be possible to add assumptions to these Bayes nets 
about the temporal relations between the frames and the sample (e.g., 
whether the frame constraints are known about before or after the 
sample data is presented), and then test the predictions of the resulting 
Bayes net models against our inference data. 

Although Bayesian approaches have most often been used to model 
the impact of sampling assumptions on property inferences, it is worth 
considering whether other models of inference could be extended to 
capture these effects. One well-known account, the Similarity-Coverage 
(Sim-Cov) model (Osherson et al., 1990), assumes that property infer
ence is driven by two complementary components; i) the similarity be
tween sample instances and targets, and, ii) coverage or the similarity 
between the sample instances and members of a higher-level category 
that includes both the sample and targets. The relative weight given to 
each component is determined by a free parameter α. The narrower 
generalization associated with a property frame compared to a category 
frame could be captured by increasing the value of this parameter, 
giving more weight to sample-target similarity. Shifts between frames 
presented before and after the sample data could likewise be captured by 
a change in a relative weighting of similarity and coverage. Note, 
however, that Sim-Cov model does not offer any principled explanation 
for why such shifts should take place. 

Another issue that remains open to further investigation is how 
people represent the knowledge that they acquire from observing sam
ples subject to different types of frames. The Bayesian model of biased 
sampling (Hayes, Banner, et al., 2019), makes no explicit representa
tional assumptions. It is possible that some people may represent this 
knowledge as a summary rule. For example, under property sampling, 
after observing a sample like those used in the current experiments one 
might infer that “only small birds have this property”. Notably, however, 
our results show that, if people do form summary rules, they are not 
static – they are readily revised and replaced with new rules in line with 
changes in beliefs about sample generation. 

If people do form summary rules after observing the data, then it 
might be argued (as did a reviewer) that there is an alternative “anchor 
and adjust” account of our results. The suggestion is that learners' in
ferences are anchored to a static rule that is adjusted incrementally as 
new sample data are encountered (cf. Hogarth & Einhorn, 1992). 
However, it is hard to see how an anchor and adjust approach alone, 
with no mental model of sampling, could explain how and why people 
who have initially anchored on a given rule (e.g., “only birds have this 
property” following property sampling) then shift to a different rule 
(“it's possible that both birds and non-birds may have the property”) 
when an alternative category frame is presented. This shift, observed in 
Experiments 2 and 3, implies that people encode both a) how the sample 

was generated, and b) the implications of this generative process for the 
observed sample, and also use both sources of information to evaluate 
rival hypotheses about far a property generalizes. Without all of these 
components, they would not change their generalization in the way we 
observe. 

Moreover, the anchor and adjust account appears inconsistent with a 
body of previous research which shows that whether or not people 
adjust their inferences as they observe more data depends on their 
sampling assumptions (Hayes et al., 2023; Hayes, Banner, et al., 2019; 
Ransom et al., 2022). For example, under property sampling, people are 
more likely to believe that the property does not generalize beyond the 
observed category as more category members that have the property are 
observed (i.e., as the sample size increases). In contrast, increasing the 
size of the observed sample has little impact on the inferences made 
under category sampling. 

5.2. Adjusting for biased sampling 

The current work highlights how flexible people can be when using 
information about sample generation processes to make inferences from 
sample data. These results challenge a strong version of the meta- 
cognitive myopia argument (Fiedler, Prager, & McCaughey, 2023), 
which holds that people generally neglect sample generation when 
making judgments and decisions. That said, it is clear that there are 
many situations in which people do fail to factor biased sample selection 
into their inferences (e.g., Feiler, Tong, & Larrick, 2013; Fiedler, 
Brinkmann, Betsch, & Wild, 2000). In explaining this discrepancy, we 
should be mindful of the conditions under which our participants 
exhibited sensitivity to sampling frames. In each study, all participants 
saw the same sample data, and were given detailed causal information 
about different sample generation processes. Our results suggest that 
people are able to draw sensible inferences from causal explanations of 
sample selection applied to familiar categories and are capable of 
updating their inferences when new causal explanations replace old 
ones. Notably though, observation of the sample was passive – partici
pants had no control over sample selection. In contrast, when partici
pants have control over the sampling process, and use a sampling 
strategy that leads to a biased or unrepresentative sample (e.g., Fiedler 
et al., 2000; Le Mens & Denrell, 2011), they struggle to correct for these 
biases. In other words, learners appear to understand the implications of 
sampling biases that have been applied to an existing data set. But when 
the biases in the sample arise from their own sampling decisions, 
learners find it harder to adjust their inferences. 

Another possible boundary condition on sensitivity to selection 
biases relates to sample composition. In the current studies, the sample 
was always made up of discrete members of a familiar category (i.e., 
each was a unique picture from the category of “small birds” that was 
easy to distinguish from other pictures). Previous work suggests that 
learners find it easier to draw inferences from samples composed of 
discrete instances (Xie, Navarro, & Hayes, 2021). In contrast, they 
struggle with drawing appropriate inferences from samples that contain 
repeated presentations of the same instance – often overweighting the 
evidential value of these repetitions (cf. Connor Desai, Xie, & Hayes, 
2022; Unkelbach, 2007; Yousif, Aboody, & Keil, 2019). 

5.3. The continued influence effect and retraction of misinformation 

We have noted parallels between the influence of initial and revised 
sampling assumptions and studies of the continued influence of misin
formation on event memory (e.g., Ecker et al., 2011; Johnson & Seifert, 
1994). Two different theoretical accounts have been proposed to explain 
the continued influence effect (Chan, Jones, Hall Jamieson, & Albarra
cín, 2017; Lewandowsky et al., 2012). In the selective retrieval account, 
continued influence occurs when correct and incorrect information are 
simultaneously stored in memory; upon retrieval, misinformation is 
activated but inadequately suppressed. In the model-updating account, 
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removing misinformation leaves a gap in people's mental models. People 
prefer a coherent (incorrect) mental model to an incoherent (correct) 
mental model, so the misinformation is maintained. A correction may 
not fill the mental gap left by removing misinformation unless it pro
vides an alternative explanation for the event's outcome (e.g., Ecker 
et al., 2011). Corrections should provide information that can effectively 
replace the refuted mental model components without compromising 
the coherence of the existing elements (Lewandowsky et al., 2012). 

The current results are consistent with the model-updating account. 
We found that the influence of an initial sampling frame on property 
inferences could be overridden by an alternative causal explanation 
provided after the data were observed. In other words, people were able 
to shift between different representations or “mental models” of how the 
sample data were generated. The current work extends this model 
updating account beyond the reinterpretation of existing evidence. We 
have shown that revising one's model of sample selection can change the 
property inferences that one makes about novel items that were not part 
of the original sample. 

More generally, our results suggest that it may be possible to counter 
the negative effects of misleading or distorted information via “de- 
bunking” or retrospective re-evaluation of that information based on an 
alternate causal model. Meta-analytic reviews of debunking in
terventions (Chan et al., 2017; Walter & Tukachinsky, 2020), have 
shown that such interventions are more likely to succeed when they 
offer a coherent, alternative explanation of the misinformation. 

Reviews of research on the retraction of misinformation also suggest 
issues of interest for future studies of the updating of sampling as
sumptions. For example, Walter and Tukachinsky (2020) found that it 
becomes more difficult to counteract the effects of misinformation with 
increasing delays between exposure to the misinformation and its 
correction. In the current work, there were relatively short retention 
intervals between the presentation of the initial sampling frame, the 
sample data, and the final sample frame. Future work, therefore, should 
vary these intervals, and examine whether people are able to success
fully update their sampling frames when there is a longer delay between 
exposures to the sample data and the revised frame. 

5.4. Conclusions 

When we make inferences based on samples of evidence, we consider 
not just the contents of the sample, but also how the sample was 
generated. The current work has shown that people can revise and up
date their beliefs about the sample generation process – switching from 
an initial explanation of sampling constraints to a revised explanation 
received after the sample was observed. Such flexibility has important 
benefits – in particular, it means that old, incorrect beliefs about the data 
can be revised, and that people can adjust their inductive inferences 
accordingly. 
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Appendix A 

A.1. Experiment 2 Instructions  

Frames Condition Instructions presented after the warm up phase 

Category Sampling (including Category only and 
Category to Property) 

In this phase you will see a sample collected by the robot on the left (only collects small birds). 
You discover that this robot had already been used to bring back a collection of 10 small, sparrow-like birds that it found on the 
island. 
Given time constrains, you decide to use this sample in your investigation and test the birds for plaxium blood. 

Property Sampling (including Property only and 
Property to Category) 

In this phase you will see a sample collected by the robot on the right (only collects animals that test positive for plaxium). 
You discover that this robot had already been used to bring back a collection of 10 animals that had tested positive for the 
presence of plaxium blood. 
You decide to use this sample in your investigation and examine the types of animals present.  
Instructions presented after the complete sample was observed (switch conditions only) 

Category-to-Property WARNING: There was a mix-up in the information you were given about which robot collected the samples that you have seen. 
The samples you saw were actually collected by the robot designed to collect only animals that tested positive for plaxium 
blood using an inbuilt ‘plaxium-sensitive camera’. 
You realise that you must disregard your previous conclusions and use this new information to answer your research question 
about which animals on the island have plaxium. 
Here is the sample of animals that the robot collected with the correct robot beside it. 

Property-to-Category WARNING: There was a mix-up in the information you were given about which robot collected the samples that you have seen. 
The samples you saw were actually collected by the robot designed to collect only samples of small birds. 
You realise that you must disregard your previous conclusions and use this new information to answer your research question 
about which animals on the island have plaxium. 
Here is the sample of animals that the robot collected with the correct robot beside it.  
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