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A B S T R A C T

The impressive recent performance of large language models has led many to wonder to what extent they can
serve as models of general intelligence or are similar to human cognition. We address this issue by applying
GPT-3.5 and GPT-4 to a classic problem in human inductive reasoning known as property induction. Over two
experiments, we elicit human judgments on a range of property induction tasks spanning multiple domains.
Although GPT-3.5 struggles to capture many aspects of human behavior, GPT-4 is much more successful: for the
most part, its performance qualitatively matches that of humans, and the only notable exception is its failure to
capture the phenomenon of premise non-monotonicity. Our work demonstrates that property induction allows
for interesting comparisons between human and machine intelligence and provides two large datasets that can
serve as benchmarks for future work in this vein.
In late 2022 and early 2023, large language models (LLMs) ex-
ploded into the public arena and captured the imagination of academic
researchers and the general public alike. Systems such as ChatGPT
and GPT-4 are so adept at engaging in natural conversations on a
broad range of topics that even sober teams of researchers have con-
cluded that these models show ‘‘sparks of artificial general intelli-
gence’’ (Bubeck et al., 2023). As a result, there is currently intense
interest in the scope and limitations of these models and the ways in
which they may transform society.

LLMs had been extensively studied even before their recent surge in
popularity, and for several years there has been an active research area
that aims to carefully evaluate how their abilities compare with those
of humans. Many families of tasks are used in this literature (Chang &
Bergen, 2023), including some that specifically target linguistic abili-
ties (Hu, Gauthier, Qian, Wilcox, & Levy, 2020) and others that target
commonsense knowledge and logical reasoning (Rae et al., 2021). Here
we propose that the set of existing tasks can be usefully supplemented
by drawing on the extensive psychological literature on inductive rea-
soning. To support this general claim we explore the extent to which
two generations of the GPT model (GPT-3.5 and GPT-4) are able to
account for core phenomena in human property induction (also known
as category-based or categorical induction).

∗ Corresponding author.
E-mail address: simon.jerome.han@gmail.com (S.J. Han).

Inductive reasoning is a fundamental cognitive challenge that re-
quires arriving at plausible conclusions in the face of uncertainty (Hol-
land, Holyoak, Nisbett, & Thagard, 1986; Sloman & Lagnado, 2005).
An inference is deductive if the conclusion follows with certainty given
the available evidence, but inductive if the conclusion is plausible but
not guaranteed. Because most everyday reasoning problems involve
sparse, noisy, or uncertain data, most of these problems require in-
ductive rather than deductive reasoning (Chater, Oaksford, Hahn, &
Heit, 2011). Within the AI literature, work on inductive reasoning
falls under many different headings including non-monotonic reason-
ing (Brewka et al., 1997), commonsense reasoning (Davis & Marcus,
2015) and natural language inference (Storks, Gao, & Chai, 2019).
Psychologists have also studied many varieties of induction, including
generalization (Shepard, 1987), categorization (Pothos & Wills, 2011),
and analogical reasoning (Vosniadou & Ortony, 1989). Here we focus
on property induction because this task is easily formulated using
simple linguistic stimuli, and because the literature on this task is
relatively rich.

In a property induction task, people are given premises that indicate
that a property is shared by one or more categories and must assess
whether the property is shared by a different category (Rips, 1975;
Sloman & Lagnado, 2005). For example, the top left argument in Fig. 1
vailable online 9 August 2023
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Fig. 1. Schematic illustration of selected property induction phenomena. The column on the left depicts arguments that people perceive as stronger than the corresponding
column on the right. For instance, people who are told that Cats have some property are more willing to conclude that similar animals like Lions have the property than they are
to conclude that dissimilar ones like Giraffes do. This phenomenon, shown in the top row, is known as Premise-Conclusion Similarity. The figure depicts only four of the eleven
phenomena we investigate in this paper.
might be presented by informing participants that cats have sesamoid
bones, then asking them whether lions also have sesamoid bones. Fig. 1
compares four pairs of arguments, and the distinctions between strong
and weak arguments in the top two rows are relatively obvious. In
the first row, cats are more similar to lions than to giraffes, and in
the second row, lions are more typical mammals than are giraffes.
The final two rows show how property induction tasks can elicit more
sophisticated kinds of reasoning. In the third row, the argument on
the left is stronger even though giraffes are less typical mammals
than lions (see row 2). This difference in typicality between lions and
giraffes is dominated by the fact that cats and giraffes form a more
diverse set of premises than cats and lions. The final row suggests that
adding a premise to an argument can sometimes make an argument
weaker. Under many circumstances, observing an additional species
with sesamoid bones should provide increased confidence that all
mammals have sesamoid bones, so examples of Non-Monotonicity are
especially interesting.

Property induction is an appealingly simple task that has been used
to study the reasoning of children (Carey, 1985) and adults from a
broad range of cultural backgrounds (López, Atran, Coley, Medin, &
Smith, 1997). Despite this apparent simplicity, the task yields a rich
range of phenomena that draw on many kinds of knowledge (see Hayes
& Heit, 2018 for a review). This knowledge includes not just similar-
ity (Osherson, Smith, Wilkie, Lopez, & Shafir, 1990), but also causal
relationships (Medin, Coley, Storms, & Hayes, 2003) and assumptions
about the process by which the premises were generated (Ransom,
Perfors, & Navarro, 2016). This range of inductive phenomena – from
simple similarity-based effects to theory-based effects that draw on
2

richer kinds of knowledge – corresponds to a sequence of increasingly
difficult challenges for LLMs and other computational models (Kemp
& Tenenbaum, 2009; Rogers & McClelland, 2004; Sloman, 1993). As
such, property induction tasks could potentially lead to benchmarks
that help to drive continued progress in computer science and AI. Some
of the benchmarks currently used to evaluate LLMs focus on inductive
problems and are directly inspired by psychological research (Jiang
et al., 2023; Sap, Rashkin, Chen, LeBras, & Choi, 2019), but to our
knowledge none of these benchmarks considers the task of property
induction. Here we introduce two property induction data sets that are
relatively large by the standards of psychological research, and thus
represent an initial step towards a comprehensive property induction
benchmark.

For psychologists, property induction is an important tool for assess-
ing LLMs and predecessors such as LSA (Landauer & Dumais, 1997) as
computational accounts of the acquisition, use, and representation of
semantic knowledge. Recent work has evaluated the extent to which
LLMs account for human similarity ratings, typicality ratings, and re-
sponse times (Bhatia & Richie, 2021; Lake & Murphy, 2021) in semantic
verification, and several groups have evaluated LLMs on inductive phe-
nomena inspired by the psychological literature, including analogical
reasoning (Webb, Holyoak, & Lu, 2022), pragmatic reasoning (Lipkin,
Wong, Grand, & Tenenbaum, 2023), causal reasoning (Kıcıman, Ness,
Sharma, & Tan, 2023) and social reasoning (Shapira et al., 2023; Ull-
man, 2023). Closest to the current paper is a study by Misra, Ettinger,
and Taylor Rayz (2021), who focus on typicality and include property
induction as one of the tasks that they consider. Typicality is among the
phenomena considered here, but we investigate many others as well.
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Table 1
Eleven property induction phenomena introduced by Osherson et al. (1990) and investigated in this paper. The second
column is based on the levels occupied by premises and conclusion in a category hierarchy. For specific arguments, premises
and conclusion lie at the same level, but for general arguments the conclusion lies at a higher level than the premises.
Premises are indicated in the brackets and the conclusion is on the right of the arrow.

Phenomenon Type Stronger argument Weaker argument

Similarity Specific {robin, bluejay} → sparrow {robin, bluejay} → goose
Typicality General robin → bird penguin → bird
Specificity General {bluejay, falcon} → bird {bluejay, falcon} → animal
Monotonicity General {sparrow, eagle, hawk} → bird {sparrow, eagle} → bird
Monotonicity Specific {pig, wolf, fox} → gorilla {pig, wolf} → gorilla
Diversity General {hippo, hamster} → mammal {hippo, rhino} → mammal
Diversity Specific {lion, giraffe} → rabbit {lion, tiger} → rabbit
Non-Monotonicity General {crow, peacock} → bird {crow, peacock, rabbit} → bird
Non-Monotonicity Specific fly → bee {fly, orangutan} → bee
Asymmetry Specific mouse → bat bat → mouse
Inclusion Fallacy Both robin → bird robin → ostrich
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The next section introduces the inductive phenomena that we an-
lyze, along with a theoretical account of these phenomena known as
he similarity-coverage model (Osherson et al., 1990). We then present
wo new datasets that we collected to characterize inductive reasoning
n humans, and use them to evaluate the performance of both GPT-3.5
nd GPT-4. To preview our results, we find that GPT-4 accounts well
or all of the phenomena that we investigate except Non-Monotonicity.

Because the literature on LLMs is moving so fast, it seems useful to
ocument the period during which this work was carried out. At the
ime we developed the study, GPT-3 was the most advanced version
vailable, and we chose to focus on a set of phenomena that included
ome that were within the reach of GPT-3 but others that seemed more
hallenging. GPT-4 became available shortly before we submitted this
ork for publication, and we found that it performed relatively well
hen we included it in our evaluation. Had GPT-4 been available when
e designed the study, we would have aimed to include additional

nductive phenomena that seemed clearly out of reach for GPT-3 but
hat may be feasible for GPT-4. The closing sections of the paper discuss
ome of these phenomena and suggest additional directions that future
ork on LLMs and inductive reasoning can pursue.

nductive phenomena

We follow a long tradition of studies that examine inductive rea-
oning by focusing on property induction with semantically ‘‘blank’’ or
nfamiliar properties. In a typical property induction task, participants
re asked to rate the strength of inductive arguments like ‘‘robins
ave property P, therefore birds have property P’’. We will use the
otation robin→ bird to indicate an argument that involves generalizing
property from a premise (e.g., robin) to a conclusion (e.g., birds).

rguments can also have multiple premises, indicated by putting them
n brackets on the left.

Although this task may seem simple, it gives rise to numerous
henomena that are indicative of the complex ways that humans reason
nductively. Osherson et al. (1990) presented thirteen such phenomena,
leven of which are shown in Table 1. All eleven involve comparing a
tronger argument with a weaker argument; the two phenomena not
ncluded in the table or analyzed here are omitted because they are
ot formulated in terms of a similar comparison.

Some of the phenomena directly capture effects of similarity or typ-
cality. For instance, Premise-Conclusion Similarity reflects the finding
hat people are more likely to generalize a property from one concept
o another when the concepts are more similar. Premise Typical-
ty is the finding that arguments are stronger if the premises are
ore typical of the conclusions. A slightly less reliable phenomenon,
remise-Conclusion Asymmetry, reflects the fact that an argument
hat generalizes from a typical category member to a less typical one
e.g. mouse → bat) is often rated as stronger than the reverse argument
e.g. bat→ mouse); this is probably because atypical categories are more
3

ikely to have atypical properties. p
Other phenomena relate to the hierarchical organization of cate-
ories. Conclusion Specificity reflects the intuition that greater induc-
ive leaps are required to support broader generalizations; arguments
re thus stronger if the conclusion category is more specific. The
nclusion Fallacy relates to the observation that a general argument
hat projects from a category to its enclosing class (e.g. robin → bird)
s often considered stronger than a more specific argument (e.g. robin
ostrich) even though the latter is logically entailed by the former.

e evaluate the inclusion fallacy for completeness, but because it is
ormally viewed as a fallacy it may not necessarily be appropriate as
target for AI models like GPT-3.5 and GPT-4.

In addition to these relatively straightforward phenomena, there are
lso those which appear to reflect more sophisticated or theory-based
easoning about underlying mechanisms. Premise Diversity refers to
he fact that arguments are often considered stronger if their premises
re less similar to one another. This captures the general intuition,
ased on an understanding of statistical sampling, that diverse evi-
ence is more compelling than narrow evidence. A similar mechanism
ay underlie systematic violations of Premise Monotonicity, in which

dditional positive premises increase the strength of an argument.
onotonicity often holds if all premises are drawn from the same

uperordinate category, but adding premises from a different superor-
inate category can lead to the opposite pattern of reasoning, known
s Premise Non-Monotonicity. For example, the inclusion of orangutan
n the argument {fly, orangutan} → bee means that the context of the
rgument (the smallest category which includes the premise and inclu-
ion categories) changes from insect to animal. This suggests that the
roperty in question is not insect-specific, and thus reduces the chance
hat bees share it. These violations of premise monotonicity have been
hown to be influenced by the reasoner’s theoretical assumptions about
ow the premises were generated (Hayes, Navarro, Stephens, Ransom,
Dilevski, 2019; Ransom et al., 2016; Voorspoels, Navarro, Perfors,

ansom, & Storms, 2015).

imilarity-coverage model (SCM)

In addition to characterizing the inductive phenomena just de-
cribed, (Osherson et al., 1990) presented a theory known as the
imilarity-coverage model (SCM) that is able to account for all of them.
t will be used as part of our evaluation of GPT-3.5 and GPT-4.

The SCM builds on the fact that several inductive phenomena can
e derived purely from similarity between categories. For example,
obin → sparrow is stronger than robin → goose because robins are more
imilar to sparrows than geese. Similarly, robin → bird is stronger than
enguin → bird because robins are more similar to the prototypical bird
han penguins are. In both cases, the probability that the premise and
onclusion categories share a property increases solely based on the
imilarity of the two sets of categories.

Although similarity-based accounts of property induction are sim-

le and intuitive, they fail to account for more complex phenomena
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such as non-monotonicity and diversity. The SCM captures them by
incorporating a notion called coverage, which denotes the degree to
which the premise categories are similar to members of the lowest
level category class that encapsulates each of the premise and conclu-
sion categories. Osherson et al. (1990) demonstrate that a weighted
combination of coverage and premise-conclusion similarity captures all
eleven of the phenomena in Table 1.

Overview

This paper is divided into two experiments, each focused on com-
paring human inductive judgments with equivalent judgments derived
from GPT-3.5 and GPT-4. The design of each experiment was inspired
by the experiments of Osherson et al. (1990). In Experiment 1, the task
was to pick the stronger argument out of a pair of property induction
arguments, and in Experiment 2 it was to rate the strength of an
argument in isolation.

Both experiments included stimuli from three category domains:
Mammals, Birds, and Vehicles, sourced from the Leuven Natural Con-
cepts Dataset (LNCD) reported in De Deyne et al. (2008). Psychological
studies of induction often use arguments about mammals, and examples
involving birds are common in the AI literature on defeasible reasoning.
Comparing performance across three separate domains ensures that the
LLMs are required to reason about domains with different levels of
prominence in their training data. We selected 24 categories from each
of the three domains by first excluding those that were near-duplicates
or unfamiliar, and then randomly removing some until the category
sets for each domain were of the same size. The full list of categories
in each domain is shown in Table 2.

1. Experiment 1: Argument pairs

In this experiment, agents were presented with a series of property
induction argument pairs and were then asked to pick the stronger
argument of each pair.

1.1. Generating argument pairs

With three domains, 24 categories in each domain and the 11 phe-
nomena in Table 1, evaluating all possible combinations of arguments
is extremely prohibitive. We therefore generated a subset of argument
pairs for each phenomenon and domain, ensuring as far as possible
that they were sufficient to capture the range of variation. As a first
step, for each phenomenon in each domain we sampled thousands
of candidate argument pairs by replacing each slot in the argument
template with a randomly sampled category. We then selected the
candidate pairs that were most appropriate for each of the phenomena
in question. For instance, Similarity, Typicality, Asymmetry, and the
Inclusion Fallacy are all stronger if one of the arguments contains a
highly typical or similar premise category and the other contains a
highly atypical or dissimilar premise category. We thus restricted the
candidate pool for those phenomena to the categories (and category
pairs) that had typicality (and similarity) ratings of 0.75SD above or
below their domain’s mean typicality (or similarity) rating as given
by the LNCD norms (De Deyne et al., 2008). To control for similarity
and typicality effects in Diversity and Monotonicity argument pairs, we
ensured that the unique premise category in each pair was no more
typical or similar in the stronger argument than it was in the weaker
argument. To construct premise categories for Non-Monotonicity, we
sampled from three supplementary domains: reptiles for Mammals,
insects for Birds and tools for Vehicles.

Once we had candidate pools, our goal was to select the 24 pairs
n each phenomenon-domain split that were most likely to capture that
henomenon. We achieved this by using an SCM model based on LNCD
imilarity ratings to calculate, for each argument pair, a measure of the
4

isparity between the strength of the stronger and weaker arguments in s
Table 2
The 24 categories used in each domain. The same categories were used in both
experiments except that in Experiment 2, four Mammals (beaver, giraffe, lion, and
rabbit) were replaced with monkey, hippo, fox and wolf in order to facilitate comparison
to Osherson et al. (1990), which used the latter.
Mammals bat, beaver, camel, cat, cow, deer, dog, donkey, elephant, giraffe,

hamster, hedgehog, horse, kangaroo, lion, llama, mouse, pig,
rabbit, rhino, sheep, squirrel, tiger, zebra

Birds blackbird, canary, chicken, crow, dove, duck, eagle, falcon, heron,
magpie, ostrich, owl, parrot, peacock, penguin, robin, rooster,
seagull, sparrow, stork, swan, swallow, turkey, vulture

Vehicles airplane, bicycle, boat, bus, car, caravan, carriage, cart,
helicopter, hovercraft, jeep, moped, motorbike, rocket, skateboard,
sled, submarine, taxi, tractor, tram, train, truck, van, zeppelin

that pair. We then selected the 24 pairs with the highest SCM disparity.1
This resulted in 792 unique argument pairs in total across the whole
experiment (11 phenomena × 3 domains × 24 argument pairs).

.2. Presenting argument pairs to humans

articipants
We recruited 120 people via Amazon Mechanical Turk who were

ach paid $1.50USD for the 5-8 min study. All passed a screening for
nglish language competency prior to participation and indicated in-
ormed consent via an online consent form. Both experiments were ap-
roved by the Human Research Ethics Subcommittee of the University
f Adelaide.

timuli
Each participant was shown a different set of 66 argument pairs

hat were randomly sampled from the set of 792 described above. We
nsured that everyone saw stimuli from all three domains and all 11
henomena (presented in a different random order for each person).
n addition to the 66 experimental trials, there were four attention
heck trials, resulting in 70 trials in total. The attention check trials,
hich occurred after every 16 trials, were the same for all participants.
hey were designed to look like a standard argument pair but had
relatively unambiguous answer (e.g., Robins → Gorillas vs Robins

→ Sparrows); we reasoned that responding incorrectly to them would
indicate inattentiveness or a failure to understand the task. Participants
who did not answer at least three of the four check questions correctly
were excluded (𝑁 = 10), resulting in 110 people in the full dataset.
There were a mean number of 9.17 ratings obtained for each of the 33
phenomenon-domain splits (min: 8; max: 10).

Procedure
At the start of every session, participants were shown the following

instructions:

We are interested in how people evaluate arguments.
On each trial there will be two arguments labeled
‘A’ and ‘B.’ Each will contain one, two, or three
statements separated from a claim by a line. Assume
that the statements above the line are facts, and
choose the argument whose facts provide a better
reason for believing the claim. These are subjec-
tive judgments; there are no right or wrong answers.

1 Because the LNCD only includes ratings between pairs of categories
ithin the same domain, we could not obtain SCM scores for Specificity
nd Non-Monotonicity argument pairs. However, it was straightforward to
erive the stronger and weaker arguments for each of our constructed pairs:
or Specificity, the stronger argument is always the argument with the more
pecific conclusion, and for Non-Monotonicity the stronger argument is always
he one with a more specific category superset. For these phenomena, we

imply took a random sample of 24 pairs in order to generate the final split.
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Fig. 2. Experiment 1 screenshot. On each trial, participants were shown two arguments (A and B) on the left, and then asked to rate which was stronger using the 6-point
slider on the right (the slider was always initialized to the midpoint but people were required to move it to one of the six options before they could continue to the next trial).
All participants saw a different random subset of the 792 possible argument pairs, constrained so that each person saw examples from all three domains and all 11 phenomena.
This screenshot contains an argument pair from the domain of Vehicles and the phenomenon of Premise Diversity (which predicts that Argument B is stronger).
Table 3
Best-performing GPT-4 prompt for Experiment 1. It was identified by evaluating multiple prompts varying the components of System, Context,
Argument, Question, and Options. The column on the left indicates which variant of that component it corresponds to. For System message S3,
X is replaced by living things for the Mammals and Birds domains, and objects for the Vehicles domain.
S3 You are an expert on X and the types of real world properties that they have. The questions you’ll

see don’t have right or wrong answers, and you are willing to use your best judgment and commit
to a concrete, specific response even in cases where you can’t be sure that you are correct.

C1 We are interested in how people evaluate arguments. On each trial there will be two arguments
labeled ‘A’ and ‘B.’ Each will contain one, two, or three statements separated from a claim by a
line. Assume that the statements above the line are facts, and choose the argument whose facts
provide a better reason for believing the claim. These are subjective judgments; there are no
right or wrong answers.

A1 Argument A: Fact - Dogs have property P.
Claim - All mammals have property P.

Argument B: Fact - Hedgehogs have property P.
Claim - All mammals have property P.

Q3 Question: Assuming all the facts given are true, which argument makes a stronger case for the
claim? To get the best answer, first write down your reasoning. Then, based on this,

O1 Indicate the strength of your preference by providing one of the following options:
A - Argument A is much stronger
B - Argument A is stronger
C - Argument A is slightly stronger
D - Argument B is slightly stronger
E - Argument B is stronger
F - Argument B is much stronger
On each of the 70 trials, people were shown two argument pairs la-
beled Argument A and Argument B; whether the stronger or weaker
argument of each pair was labeled as Argument A or Argument B
was randomly assigned. Each argument pair was presented on its own
page, and on the right of the pair people were asked ‘‘Assuming all
the facts given are true, which argument makes a stronger case for the
claim?’’ They then selected their response using a 6-point Likert scale
ranging from 1 (Argument A is much stronger) to 6 (Argument B is
much stronger). A screenshot from an example trial is shown in Fig. 2.
5

1.3. Presenting argument pairs to GPT-4

To obtain analogous judgments from GPT-4, we used the gpt-
4-0314 engine within the Chat API of OpenAI. We set temperature
𝑡 = 0 for all API requests alongside a maximum response length of 400
tokens. While higher temperature values in theory might have allowed
us to obtain a response distribution from GPT-4 for every argument pair
and prompt design, in practice we found that final response ratings did
not vary much even for 𝑡 = 1. We therefore presented the 792 argument
pairs to GPT-4 only once for each prompt design.
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We designed the prompts for GPT-4 with two aims in mind. First, we
wanted them to be as similar as possible to the instructions our human
participants saw. Second, given the degree to which the performance
of GPT-4 varies based on the prompt, we wanted to make sure that
our results could not obviously be improved by better prompts. To
accomplish this, we designed a logical space of prompts and selected
a subset of the most promising to evaluate. The logic of our design
was informed by the observation that a prompt could be constructed
by combining task agnostic instructions (the System message) with
four consecutive components: the explanation of the task (Context),
the structure of the arguments being rated (Arguments), the judgment
elicitation (Question), and the specification of the answer format
(Options). There were three variants of the System message (S1–S3),
four of Context (C1–C4), three of Arguments (A1–A3), four of Question
(Q1–Q4), and two of Options (O1–O2); all are shown in Appendix A.

Because running all 288 possible prompts on all 792 arguments
was prohibitively expensive, we identified a subset of prompts that we
thought would maximize the ability of GPT-4 to respond well. This
included a baseline prompt designed to be as similar as possible to the
human experiment (S1-C1-A1-Q1-O1), one that is similar to the base-
line except with a more specific system message (S3-C1-A1-Q1-O1), one
that also adds a chain-of-thought direction (S3-C1-A1-Q3-O1), and one
that elicited domain-specific reasoning in particular (S3-C1-A1-Q4-O1).
For each of the 33 phenomena-domain splits, we then evaluated the
performance of each prompt using the sign test described in Section 1.5.
The best-performing prompt was S3-C1-A1-Q3-O1, shown in Table 3,
and all of the results reported in the main text are based on this prompt.

1.4. Presenting argument pairs to GPT-3.5

In addition to GPT-4, we also presented our set of argument pairs
to GPT-3.5. This was achieved using the text-davinci-003 engine.
Although the GPT-3.5 series of models includes multiple variants, we
chose text-davinci-003 because it is the best performing model
that uses the OpenAI Completions API. Where possible, results for other
GPT variants are reported in Appendix D. Like our experiments with
GPT-4, we set 𝑡 = 0 for all API requests alongside a maximum response
length of 400 tokens. Because we use the Completions API and not
the Chat API for GPT-3.5, we adapted our baseline prompt for GPT-
4 to GPT-3.5 by including both the system message and the user
message in a single completions prompt.

Because the GPT-3.5 Completions API includes token probabilities
in its responses, we assess GPT-3.5 differently from GPT-4. Instead of
taking the single most likely completion generated by GPT-3.5, we
generate a score for each argument pair using the sum of probabilities
for each point on the provided Likert scale, weighted by rank, at
the token position at which the provided answer occurs. Thus, our
results for GPT-3.5 are continuous rather than discrete, and our ability
to access token probabilities for GPT-3.5 affords it a methodological
advantage in precision over GPT-4.

1.5. Results

Fig. 3 compares the performance of humans, GPT-3.5, and GPT-4
across all three domains on the 11 inductive reasoning phenomena
we investigated. It is immediately apparent that each kind of agent
exhibits a qualitatively different pattern of response. Human ratings
(dark blue) are almost always unimodal and usually located to one side
of the rating scale but closer to the center than either end. Conversely,
GPT-3.5 ratings (green) are much more often bimodal and extreme.
This reflects the fact that GPT-3.5 preferred to select options A and
F rather than any of the other four choices. Direct visual comparisons
between GPT-4 (red) and humans (blue) are more difficult because of
the discrete nature of the GPT-4 responses, but it is clear that the peaks
6

of the red and blue distributions do not always coincide.
Table 4
Quantitative evaluation of GPT-3.5, GPT-4 and Humans on the 11 phenomena across
all three domains. The number represents the 𝑝-value on a sign test, with significant
p-values indicating a preference for one argument over the other. Most of the time
this preference is in the theoretically predicted direction (*), but when the weaker
argument is endorsed significantly more (◦) it is in the opposite. Results for GPT-3.5’s
chat variant are reported in Table D.8.

Phenomenon Domain GPT-3.5 GPT-4 Humans

Similarity Mammals 0.17 <0.001 * <0.001 *
Birds 0.69 <0.001 * <0.001 *
Vehicles 0.11 <0.001 * <0.001 *

Typicality Mammals 0.54 <0.02 * <0.001 *
Birds 0.54 <0.001 * <0.001 *
Vehicles 1.0 <0.001 * <0.001 *

Specificity Mammals 0.84 <0.001 * <0.001 *
Birds 0.84 <0.001 * <0.001 *
Vehicles 0.54 <0.001 * <0.001 *

Monotonicity Mammals <0.02 * <0.001 * <0.001 *
(General) Birds 0.54 <0.001 * <0.001 *

Vehicles <0.001 * <0.001 * <0.001 *

Monotonicity Mammals 0.31 <0.001 * 0.06
(Specific) Birds 0.84 <0.001 * <0.001 *

Vehicles 0.84 <0.001 * 0.29

Diversity Mammals 0.84 <0.001 * 0.06
(General) Birds 0.54 <0.001 * 1.0

Vehicles 1.0 0.06 < 0.03◦

Diversity Mammals 1.0 0.15 < 0.01◦
(Specific) Birds 0.54 0.84 0.68

Vehicles 0.31 0.15 0.68

Nonmonotonicity Mammals < 0.001◦ <0.02 * <0.001 *
(General) Birds 0.31 <0.001 * <0.001 *

Vehicles 0.84 0.15 <0.01 *

Nonmonotonicity Mammals 1.0 < 0.001◦ 0.15
(Specific) Birds 0.15 < 0.001◦ <0.001 *

Vehicles 1.0 < 0.001◦ <0.01 *

Asymmetry Mammals 0.06 0.68 0.4
Birds 0.06 1.0 <0.001 *
Vehicles 0.54 0.82 0.05

Inclusion Mammals 0.84 0.06 0.06
Fallacy Birds 0.84 < 0.001◦ 1.0

Vehicles 0.54 0.54 <0.001 *

While Fig. 3 illustrates performance visually, Table 4 characterizes
it statistically. Since our theories primarily make predictions about
which argument (if any) is endorsed more rather than by how much,
we recode each response as a (-) or a (+), where (+) indicates that
the theoretically-predicted stronger argument was actually rated as
stronger and (-) indicates the opposite; the few ratings that were exactly
even were discarded. For each of the three agents (humans, GPT-3.5,
and GPT-4) and each of 33 phenomenon/domain splits, this yields a
vector of +/- values; we can then use a one-sample sign test to compare
them against the null hypothesis that there will be equal numbers of
each. The numbers in each cell of Table 4 correspond to the 𝑝-value
on the sign test for that agent, domain, and phenomenon; significant p-
values indicate a significant preference for one argument or the other.
Since the sign test does not capture directionality, some items are
significant but in the opposite of the predicted direction, such that the
agent favors the theoretically weaker argument; these are indicated in
Table 4 with the ◦ symbol.

There is a substantial difference across phenomena in the ability
of the large language models to capture human behavior. For some
phenomena – Specificity, Similarity, Typicality, and Monotonicity –
both humans and GPT-4 consistently endorsed the stronger argument
more, in accordance with previous findings. For GPT-3.5, performance
was poor; it was also usually bimodal, reflecting the fact that it often
appeared to react based on superficial features of the prompt like the
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Fig. 3. Inductive reasoning phenomena exhibited by GPT-3.5, GPT-4 and human reasoners. Responses reflect which arguments were rated stronger (by convention this is
the argument on the right) for each of the 3 domains (columns) and 11 phenomena (rows). Distributions are continuous for GPT-3.5 and humans and discrete for GPT-4 because
of API constraints (multiple bars occur when it gave different answers for specific stimuli within each domain-phenomenon cell). GPT-3.5 performs poorly in general. While GPT-4
captures phenomena involving Similarity, Specificity, Typicality and Monotonicity, it makes the opposite predictions as humans for Non-Monotonicity (Specific).
order the arguments appeared in.2 Consistent with this, as shown in
Appendix C, the reasoning by GPT-4 anecdotally appears more appro-
priate than that presented by GPT-3.5, referencing relevant concepts
(e.g., stating that ‘‘robins are more representative of the typical bird’’
when explaining its answer for Typicality).

There are another set of phenomena – Diversity, Asymmetry, and
Inclusion Fallacy – where people in our experiments did not robustly
endorse the argument that is theoretically predicted to be stronger.
For the most part, GPT-3.5 and GPT-4 did not do so either, with the
exception that GPT-4 (unlike our participants) showed the Diversity
effect for General arguments. We consider reasons for this puzzling
pattern of results in the Discussion.

Perhaps most interestingly, neither GPT-3.5 nor GPT-4 captured
human behavior on the Non-Monotonicity phenomena. For General

2 In earlier work (Han, Ransom, Perfors, & Kemp, 2022) we reported
results suggesting that GPT-3 does capture phenomena including Similarity,
Typicality, and Specificity, but in that evaluation we controlled for argument
order by including prompts with both possible orders. The difference between
our previous and current results exposes how heavily GPT-3.5 is influenced by
superficial features of the prompt.
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arguments, GPT-3.5 leans towards endorsing the opposite argument
from the one that is theoretically predicted and endorsed by our
participants. GPT-4 performs fairly well for General arguments but
shows a strong preference in the opposite direction from people for
the Specific arguments. Indeed, GPT-4’s stated reasoning often reflects
the erroneous idea that additional examples should make a conclusion
stronger: it makes an argument for Monotonicity and against Non-
Monotonicity (see Appendix C). We return to Non-Monotonicity and
GPT-4’s failure to capture this phenomenon in the Discussion.

2. Experiment 2: Individual arguments

Considering inductive phenomena in isolation is a useful starting
point, but this approach is limited because multiple phenomena are
relevant to some inferences, and these phenomena sometimes conflict.
For example, from the perspective of Diversity {flamingo, albatross} →
bird is relatively strong because the premise categories are so different
from each other. However, it is weak from the perspective of Typicality
since the premise categories are atypical of birds.

In Experiment 2, we therefore moved beyond the individual phe-
nomena in Table 1 by assessing the ability of GPT-3.5 and GPT-4 to rate
the inductive strength of relatively large sets of arguments. Osherson
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et al. (1990) studied this in humans by asking participants to rank
two sets of arguments involving mammals. One set included 36 two-
premise Specific arguments such as {cow, chimp} → horse, where the
conclusion in all cases was horse. The second included 45 three-premise
General arguments such as {horse, cow, mouse} → all mammals, where
the conclusion category was always all mammals. The Osherson et al.
(1990) dataset has been used in several subsequent studies (Han et al.,
2022; Kemp & Tenenbaum, 2009) but is limited because it includes
a relatively small set of arguments from a single domain. As a result,
our first step in Experiment 2 was to obtain judgments from humans
on a much larger and more varied dataset of arguments. We then
compared human judgments with ratings of argument strength elicited
from GPT-3.5 and GPT-4 as described below.

Experiment 2 used a design in which agents were presented with
a series of individual arguments and asked to rate each argument’s
strength in isolation. The experiment therefore departs from the ap-
proach of Osherson et al. (1990), who asked participants to rank
argument sets, but follows the approach of Glick (2011), who also
collected strength ratings for individual arguments.

2.1. Generating individual arguments

For each of our three domains, we generated 100 two-premise
general arguments (whose conclusion was all mammals, all birds, or all
vehicles) and 100 two-premise specific arguments (whose conclusion
was one of the 24 categories in that domain). We did this by first
randomly sampling 10,000 arguments for each of the six domain-
conclusion splits (3 domains × 2 conclusions, general or specific). After
removing duplicates, we ranked the strength of each argument using
the SCM. In order to ensure that our set of arguments contained the
full range of strengths, we divided the ranked set of arguments into 25
equal width bins, then sampled four from each bin to construct the full
set of 100 arguments. Sampling was random subject to the constraint
that no premise set could appear more than three times and no category
could appear more than 15 times.

For each set of 100 two-premise arguments we then constructed
a corresponding set of single-premise arguments consisting of all of
the premise-conclusion mappings from the two-premise set. Thus, for
instance, the two-premise argument {canary, seagull} → stork would
correspond to the one-premise arguments canary → stork and seagull
→ stork.

The precise number of single premise arguments varied depending
on the degree of overlap in the categories that were selected, but ranged
from 24 for general arguments to 169 for specific mammal and bird
arguments. In total, across all six domain-conclusion splits as well as
both one-premise and two-premise sets, there were 1168 arguments.

2.2. Presenting individual arguments to humans

Participants
We recruited 610 people via Amazon Mechanical Turk who were

each paid $1.00USD for the five minute study. All participants passed
a screening for English language competency prior to participation and
indicated informed consent via an online consent form.

Stimuli
Each participant was randomly assigned to one of the six domain-

conclusion splits and only rated arguments from that split. The argu-
ments were presented in two blocks, one corresponding to one-premise
arguments and one corresponding to two-premise arguments. Each
participant saw one of 10 versions of each block, each based on a
stratified sample of the 100 possible two-premise arguments for that
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domain and conclusion type.3 Each participant completed 42 trials
consisting of 10 trials for the two-premise block and 32 trials for
the one-premise block. The 32 trials of the one-premise block were
composed of one-premise arguments that corresponded with the two-
premise block’s arguments alongside a random sample of additional
one-premise arguments to ensure that all participants saw the same
number of arguments in the one-premise block. In addition to the 42
trials, participants were also shown two trial arguments at the start of
each block as well as 4 attention check arguments every 8 trials. The
attention check arguments were handcrafted to have an unambiguous
answer (for example: All animals → All mammals).

Procedure
At the start of every session, participants were shown the following

instructions:

We’re going to show you a series of claims relat-
ing to living things and the properties they share.
Rather than mention any specific property (e.g.
‘‘Hyenas have sesamoid bones’’) we’ll refer to an
unspecified property (e.g. ‘‘Hyenas have property
P’’). Each claim may be true or false, and to help
you decide which, we’ll provide you with facts about
whether or not other living things have the same
property (e.g. ‘‘Lions have property P’’, and ‘‘Ze-
bras have property P’’).

People were then shown separate instructions for the one-premise
and two-premise blocks. For each block, participants were told how
many supporting facts to expect (one or two) and informed that their
job was to rate how likely the claim was. They then saw two sample
trials using fruit, and upon completing them began the main sequence
of trials in that block.

On each trial, people were shown a single argument labeled Argu-
ment A on the left of the screen. On the right, they were asked ‘‘Given
the facts presented, how likely is it that the claim is true?’’ They then
selected their response using a slider with a scale ranging from 0 (very
unlikely) to 100 (very likely). A screenshot from an example trial is
shown in Fig. 4.

Replicating Osherson et al.
To ensure that our study was broadly consistent with the original

study by Osherson et al. (1990), we ran a version of our procedure
that used the 36 specific arguments used by Osherson et al. rather than
our LNCD based arguments. This experiment involved 40 participants
who each rated one block of 10 multi-premise and one block of 10
single-premise Osherson arguments. In all other respects, its procedure
was identical to what is described above. We found that across the
36 arguments, these rankings had a Spearman correlation of 0.65 (p
< 0.001) with the original rankings obtained by Osherson et al..

2.3. Presenting individual arguments to GPT-4

Our method for presenting individual arguments to GPT-4 is very
similar to that of our first experiment. We again used the gpt-4-0314
engine within the Chat API of OpenAI with temperature 𝑡 = 0 and
a maximum response length of 400 tokens. For each prompt design,

3 Argument stratification was achieved using human similarity based SCM
cores in order to ensure that each block contained arguments with a wide
ariety of strengths. There were 11 rather than 10 versions of each block in
he General Birds split because two of the arguments in that split shared the
ame SCM score. Consequently some General Bird arguments have 11 rather
han 10 participant ratings. All other aspects of this split are identical to the

ther splits.
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Fig. 4. Experiment 2 screenshot. On each trial, participants were shown one argument on the left, and then asked to rate it using the slider on the right (the slider was
always initialized to the midpoint but people were required to move it before they could continue to the next trial). All participants saw 42 arguments from one of the six
domain-conclusion splits in two blocks, one for one-premise arguments and one for two-premise arguments. This screenshot contains a two-premise argument from the domain of

Birds with the specific conclusion category Dove.
Table 5
Best-performing GPT-4 prompt for Experiment 2. It was identified by evaluating multiple prompts varying the components of System, Context,
Trials, Argument, Question, and Options. The column on the left indicates which variant of that component it corresponds to.
S3 You are an expert on X and the types of real world properties that they have. The questions you’ll

see don’t have right or wrong answers, and you are willing to use your best judgment and commit
to a concrete, specific response even in cases where you can’t be sure that you are correct.

C1 We’re going to show you a series of claims relating to living things and the properties they
share. Rather than mention any specific property (e.g. "Hyenas have sesamoid bones") we’ll refer
to an unspecified property (e.g. "Hyenas have property P"). Each claim may be true or false, and
to help you decide which, we’ll provide you with facts about whether or not other living things
have the same property (e.g. "Lions have property P", and "Zebras have property P").

T1 This section contains a series of claims that include only one supporting fact. Before we start,
we’ll give you two examples as practice.

[insert two examples following the same format as the main trials]
Now that you’ve practiced you’re ready to continue on to the main trials for this section.

A1 Argument A: Fact - Dogs have property P.
Claim - All mammals have property P.

Q1 Question: Given the facts presented, how likely is it that the claim is true?

O1 Indicate your answer by providing a number between 0 and 100, where 0 means that the claim is
very unlikely and 100 means that the claim is very likely.
we presented the 600 two premise arguments and 568 single premise
arguments to GPT-4 only once.

The design of possible prompts was also very similar. The task
agnostic instructions (the System message) were identical, as was the
structure of the arguments being rated (Arguments). The explana-
tion of the task (Context), judgment elicitation (Question), and the
specification of the answer format (Options) were straightforwardly
adapted to correspond to this task. The only major change was the
addition of a new component (Trials) corresponding to the presence or
absence of the two practice trials involving fruit; we added this because
the participants in our experiment saw these. All variants are shown
in Appendix B using the example of one-premise arguments; prompts
for the two-premise arguments were exactly analogous.

As before, for resource reasons we identified a subset of prompts
to explore rather than systematically testing hundreds. These corre-
sponded to the four in Experiment 1 plus an additional one (S3-C1-A1-
Q1-O1-T1) which included the practice trials, which we sequentially
fed to GPT-4 in order to include its own answers to the trials in
the final prompt. Performance was evaluated based on the correlation
obtained between GPT-4 judgments and human judgments, described
more fully in Section 2.7. The best-performing prompt was the one with
the practice trials, shown in Table 5.
9

2.4. Presenting individual arguments to GPT-3.5

Like our first experiment, we used the text-davinci-003 en-
gine within the OpenAI Completions API to elicit argument ratings from
GPT-3.5, setting 𝑡 = 0 alongside a maximum response length of 100
tokens. We again relied on GPT-3.5 token probabilities and presented
our top performing prompt for GPT-4 to GPT-3.5, concatenating the
system and user messages into a single prompt. To convert GPT-
3.5 responses to argument ratings, we took the sum of the top five
token completion probabilities, each multiplied by their numeric value.
Again, this affords GPT-3.5 a methodological advantage in precision
over GPT-4.

2.5. Extracting similarity judgments from GPT-4

Supplementing our analysis of argument ratings, we also extracted
similarity judgments from GPT-4 and GPT-3.5. We used the same GPT-
4 engine and parameters as our previous experiments, and set the
response scale as 0-20 to match the original study by De Deyne et al.
(2008). We then presented GPT-4 with every category pair in the LNCD
using the user message below. In each message, X was replaced by
the category pair’s domain name (e.g., animals) while C1 and C2
were replaced by the category names (e.g., rabbits and hippos).
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Fig. 5. Correlations (Spearman’s 𝜌) between human argument rankings and rankings of five different models. Human SCM (a special-purpose model that applies the similarity-
coverage model to human similarity ratings) performs best overall, but its performance is nearly matched by GPT-4 on Specific arguments and GPT-3.5 on General ones. The
remaining two models apply the SCM to similarity ratings derived from GPT-4 and GPT-3.5. GPT-3.5 SCM improves on GPT-3.5 for Specific arguments, and GPT-4 SCM improves
on GPT-4 for General arguments. The width of each split-half bar spans one standard error on either side of the mean. Results for GPT-3 and other GPT-3.5 models are shown in

Fig. D.7.
You are an expert on X and the various properties
that they have. With these properties in mind, we
will ask you to rate the similarity of two X on a
scale of 0 to 20, where 0 means that the X have no
similarity and 20 means that they are identical.

Question: With their respective properties in mind,
how similar are C1 and C2 on a scale of 0 to 20? Answer
with a single number. Answer:

2.6. Extracting similarity judgments from GPT-3.5

To extract similarity judgments from GPT-3.5, we followed two
approaches. The first was to present GPT-3.5 with the same prompt
as GPT-4. As we did when extracting argument ratings, we calculated
GPT’s similarity rating as the sum of the top five token completion
probabilities multiplied by the numeric value of each token; each rating
was then converted to a ranking.

In the second approach, we passed each category name to the
OpenAI Embeddings API using the text-embedding-ada-002 end-
point, and then extracted an embeddings-based similarity score by
calculating the cosine similarity between each LNCD category pair.
Although the text-embedding-ada-002 model is different from
the text-davinci-003 model that we used elsewhere, we used it
because it is the best performing GPT-3 based model for embeddings-
based applications (OpenAI, 2022). We thus view its similarity ratings
as a noisy indication of what is possible when similarity is measured
using internal representations rather than completions.

2.7. Results

Split-half reliabilities across 100 splits for each argument set are
shown in Fig. 5. The split-half reliabilities for multi-premise general
arguments are relatively low, indicating a high level of variability
across participants, and as a result we will not attempt to interpret
differences in model performance for these arguments. In contrast,
the split-half-reliabilities for single-premise general arguments and for
10
specific arguments seem high enough to use these data for evaluating
alternative models.

As a benchmark for comparison, we computed ratings of argument
strength for a Human SCM model that applies the similarity-coverage
model to the human similarity ratings collected by De Deyne et al.
(2008). This human SCM model is a special-purpose model from the
literature that was specifically designed to capture judgments about
the kinds of arguments included in our experiment. A general-purpose
system such as GPT-4 has therefore performed relatively well if it
accounts for our data as well as the human SCM model.

Fig. 5 shows the correlations between the five different models and
our human ratings. We additionally perform quantitative comparisons
between model pairs based on 1000 bootstrap samples for each model,
and report those in Table 6.

For Specific arguments, Fig. 5 suggests that GPT-4 accounts for
human ratings nearly as well as Human SCM. Table 6 shows that
Human SCM outperforms GPT-4 for all four sets of Specific arguments
about Mammals and Birds, but GPT-4 outperforms Human SCM for the
two sets about Vehicles. Relative to GPT-4, GPT-3.5 performs worse
for Specific arguments. That said, across all six sets, the differences
between the models are relatively small.

The results for General arguments reveal a more substantial gap
between Human SCM and GPT-4. Table 6 shows that Human SCM
outperforms GPT-4 on single-premise sets for Mammals and Vehicles,
but that GPT-4 is superior for Birds. The difference between the mod-
els is especially large for single-premise arguments about Mammals,
where GPT-4 is uncorrelated with human ratings. Interestingly, GPT-3.5
performs better than GPT-4 for General arguments and seems roughly
comparable to Human SCM for single-premise General arguments.

We did not anticipate the superiority of GPT-3.5 over GPT-4 for
General arguments, but in retrospect this finding seems plausible. An
important difference between the two models is that GPT-4 alone was
trained using reinforcement learning from human feedback (RLHF),
which aims to better align the model’s output with human expectations.
Among other benefits, RLHF makes the model less likely to ‘‘hallu-
cinate’’ responses with no factual basis, but also impairs the model’s
reasoning ability in some contexts (OpenAI, 2023). Evaluating general
arguments may be one of these contexts, because projecting a novel
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Table 6
Comparisons between pairs of models for Experiment 2. Each comparison is based on 1000 bootstrap samples per model, and the
entries in column ‘‘M1 vs M2’’ indicate the proportion of samples for which M1 correlates better with human ratings than does M2.
Proportions greater than 0.95 indicate strong evidence in favor of M1, and smaller than 0.05 indicate strong evidence in favor of M2
(these are bold and colored according to the favored model). Human SCM, GPT-4 and GPT-3.5 are abbreviated as H, 4 and 3.
Conc. Prems Domain H vs 4 H vs 3 4 vs 3 4 vs 4 SCM 3 vs 3 SCM

Specific Single Mammals 1.0 1.0 1.0 0.02 0.0
Birds 0.99 0.99 0.38 0.0 0.0
Vehicles 0.0 1.0 1.0 1.0 0.13

Specific Multi Mammals 0.98 1.0 1.0 0.16 0.0
Birds 0.97 0.86 0.07 0.0 0.0
Vehicles 0.05 0.71 1.0 0.99 0.57

General Single Mammals 1.0 0.99 0.0 0.0 0.0
Birds 0.0 0.0 0.05 0.0 0.69
Vehicles 1.0 0.46 0.0 0.83 1.0

General Multi Mammals 0.96 0.60 0.02 0.07 0.84
Birds 0.05 0.0 0.15 0.49 0.99

Vehicles 0.99 0.13 0.0 0.41 1.0
Fig. 6. Correlations (Spearman’s 𝜌) between human similarity ratings and similarity ratings derived from GPT-4, GPT-3.5 and GPT-3 Embeddings. Error bars show standard error

of the mean across 1000 bootstrap samples.
property to a superordinate category such as all mammals requires an
inductive leap that goes well beyond the limited evidence provided
by information about two or three individual mammals. Compared to
GPT-3.5, GPT-4 may be less likely to take this inductive leap because
RLHF encourages it to remain within the bound of established facts.
As Fig. D.7 demonstrates, both the GPT-4 and GPT-3.5-chat-turbo
models tend to perform worse than non-RLHF GPT variants for general
arguments, and for GPT-3.5-chat-turbo in particular we find that almost
a quarter of all responses to general arguments explicitly mention
neutrality or suggest that the answer is ‘difficult to determine’ given
the provided information.

Although neither GPT-3.5 nor GPT-4 accounts as well as human
SCM for both Specific and General arguments, the strong performance
of GPT-4 for Specific arguments and GPT-3.5 for General arguments
suggests that a single GPT model (perhaps GPT-4 trained with less
RLHF) might be able to account for our data as well as Human SCM.
Overall, our results suggest that large language models are broadly
able to capture inductive inferences about blank properties about as
well as the best special-purpose models available in the psychological
literature.

2.8. Disentangling representation and reasoning

Evaluating an inductive argument requires some kind of reasoning
process that operates over representations of the categories in the
argument. For connectionist models such as GPT-4 and GPT-3.5 it
11
may be difficult to establish a sharp division between representation
and reasoning (Rogers & McClelland, 2014), but we can still develop
analyses that attempt to separate the two.

Representation
To probe the representational abilities of GPT-3.5 and GPT-4 we

used the similarity judgments extracted from these models by the pro-
cedure described above. Although these similarity judgments are not
direct measures of internal representations, we take them as evidence
of underlying representations in the same way that human similarity
judgments are often taken as evidence of underlying mental representa-
tions. Fig. 6 shows correlations between these similarity judgments and
the human similarity judgments reported by De Deyne et al. (2008).
Most relevant to us are results for the three domains considered in our
experiments (Mammals, Birds, and Vehicles), but we include results
for all of the domains in De Deyne et al. (2008).

The correlations between GPT-4 and human similarity ratings are
relatively high and exceed 0.6 for all three domains in our experiments.
The prompt-based correlations achieved by GPT-3.5 are lower across
all domains but still exceed 0.4 for all three of the domains in our
experiments. In contrast, the embedding-based results are relatively
poor, and we therefore use prompt-based GPT-3.5 similarities in our
subsequent analyses.

Our results in Fig. 6 parallel previous findings that the internal
representations of LLMs can be used to make relatively accurate pre-
dictions about human similarity judgments (Bhatia & Richie, 2021).
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All of these findings therefore suggest that the category representations
of both GPT-4 and GPT-3.5 should be sufficient to allow human-like
ratings of inductive strength.

Reasoning
We now ask how well the GPT models exploit their representational

abilities when evaluating inductive arguments. To do so we consider
GPT-4 SCM and GPT-3.5 SCM, two hybrid models that apply the SCM
a special-purpose model of property induction) to similarity ratings
erived from the GPT models. According to the SCM, the strength of a
pecific argument with premises 𝑃 and conclusion 𝑐 is

SCM𝐺𝑃𝑇−𝑁 (𝑃 , 𝑐) = 𝛼 ⋅max
𝑝∈𝑃

sim𝐺𝑃𝑇−𝑁 (𝑝, 𝑐)

+ 1 − 𝛼
|𝐶|

∑

𝑐𝑖∈𝐶
max
𝑝∈𝑃

sim𝐺𝑃𝑇−𝑁 (𝑝, 𝑐𝑖), (1)

where the premise and conclusion categories are all drawn from a finite
set of categories called domain 𝐶. In Osherson et al. (1990) 0 < 𝛼 < 1
is left as a free parameter, and here we set 𝛼 to 0.5.

For general arguments with premises 𝑃 that all belong to a conclu-
sion domain 𝐶, the GPT-SCM rates argument strength using:

SCM𝐺𝑃𝑇−𝑁 (𝑃 , 𝐶) = 1
|𝐶|

∑

𝑐𝑖∈𝐶
max
𝑝∈𝑃

sim𝐺𝑃𝑇−𝑁 (𝑝, 𝑐𝑖). (2)

In both cases, sim𝐺𝑃𝑇−𝑁 (𝑐𝑖, 𝑐𝑗 ) refers to the similarity rating derived
from a GPT-N model for categories 𝑐𝑖 and 𝑐𝑗 .

Comparing against a GPT-SCM model can potentially expose a gap
between the representational and reasoning abilities of a GPT model.
For example, if GPT-3.5 captures human similarity ratings relatively
well but does not use its representations effectively when evaluating
inductive arguments, then GPT-3.5 SCM should account for our human
data better than GPT-3.5. On the other hand, if GPT-3.5 reasons as well
as possible given the representations that contribute to its similarity
ratings, then GPT-3.5 SCM should perform no better than GPT-3.5.

Fig. 5 and Table 6 show that GPT-4 SCM does better than GPT-
4 on three of the six sets of Specific arguments and worse on two:
this suggests that there is no major improvement of the hybrid model
relative to GPT-4. By contrast, GPT-3.5 SCM performs better than GPT-
3.5 across four of the six specific data sets, and is worse on none
of them. Overall, these results suggest that combining GPT similarity
ratings with the SCM provides more of a boost for GPT-3.5 than GPT-
4, which in turn supports the conclusion that GPT-3.5 is more limited
in its reasoning capacities than is GPT-4.

For General arguments, the pattern of results is again reversed.
GPT-4 SCM improves relative to GPT-4 on two of the three single-
premise argument sets, but GPT-3.5 SCM is comparable to GPT-3.5
(better on one set and worse on another). These results are consistent
with the possibility that GPT-4’s ability to handle General arguments
is relatively poor and may have been compromised by RLHF. On the
other hand, on General arguments GPT-3.5 appears to reason as well
as could be expected given its category representations.

Throughout this section we have evaluated the GPT models against
human judgments and have implicitly assumed that a model that differs
from humans is reasoning relatively poorly. It is possible, however,
that the models differ from humans because they are less prone to
inferential errors and are therefore reasoning better than our experi-
mental participants. Our primary goal has been to explore the extent
to which LLMs make human-like inferences, which means that the
normative status of these inferences has not been a major concern.
Future work, however, can evaluate both human participants and GPT
models against normative accounts of inductive reasoning (Heit, 1998;
Kemp & Tenenbaum, 2009; Tenenbaum, Griffiths, & Kemp, 2006) with
the aim of identifying ways in which the models may be better and
worse than humans.

3. Discussion

We developed two new benchmark datasets that are directly in-
spired by previous psychological work on property induction but
12
incorporate a much larger set of categories, arguments, and domains.
Across two studies, we compared responses from GPT-3.5 and GPT-4
with the human inferences in these datasets. Experiment 1 focused on
11 qualitative phenomena including Similarity, Typicality, Diversity,
and Non-Monotonicity; of them, only Non-Monotonicity (Specific) was
observed in our participants but not well captured by either GPT model.
Experiment 2 asked models and humans to provide quantitative ratings
of argument strength, and found that the best results from GPT-3.5
and GPT-4 were comparable with results obtained by the similarity-
coverage model, a special-purpose model of inductive reasoning that
incorporates human similarity judgments. Taken together, the exper-
iments therefore suggest that GPT-style models broadly perform well
at the tasks that we used, and capture everything that we considered
except Non-Monotonicity.

We began this project when GPT-3 was the most advanced GPT
model available, and expected at the time that it might capture effects
related to Similarity and Typicality but would struggle to capture Diver-
sity and Non-Monotonicity. Recall that Non-Monotonicity describes the
phenomenon in which adding premises results in weaker arguments: the
three-premise argument {crow, peacock, rabbit} → bird is considered less
strong than the corresponding two-premise argument {crow, peacock} →
bird. One intuitive explanation for why people appear to reason this way
is that they implicitly assume that the premises are being generated by
a helpful provider of information (Medin et al., 2003; Ransom et al.,
2016; Voorspoels et al., 2015). Given a desired conclusion of bird, a
helpful provider would be much more likely to offer the premises crow
and peacock alone than to also include rabbit; this is because including
rabbit implicitly changes the context to favor a conclusion like mammal.

The relationship between Non-Monotonic reasoning and assump-
tions about the data generation process becomes even more obvious
when considering other Non-Monotonic argument pairs like tiger →
mammal vs {tiger, lion} → mammal. If the conclusion truly is all mammals
it seems a strange coincidence indeed (or evidence of incompetence
or unhelpfulness on the part of the provider) for both premises to
involve large cats: a helpful provider should offer clues that cover
the conclusion category as well as possible. In addition to being intu-
itively appealing, this chain of thought can be formalized as Bayesian
reasoning based on assumptions about how data is sampled (Ransom
et al., 2016). GPT-4’s failure to capture non-monotonicity (specific)
therefore suggests that it may fail to reason about how the premises
of an inductive argument were generated.

Diversity is a second phenomenon that has been justified on the
basis of sampling assumptions (Hayes et al., 2019), and is partially
captured by GPT-4. Our results for Diversity, however, are puzzling
in two respects. First, GPT-4 captured Diversity for arguments with
general conclusions (e.g., mammal), but did not show Diversity effects
when the conclusions were specific (e.g., rabbit). Second, our human
participants did not show any Diversity effect at all, and it is important
to ask why we did not replicate the work of Osherson et al. (1990) in
this respect.

The design for Experiment 1 followed the work of Osherson et al.
(1990) relatively closely, and in retrospect we see no obvious problems
with the design or the stimuli. That said, one difference between our
experiment and that of Osherson et al. (1990) is that our participants
not only saw stimuli from more domains (Vehicles and Birds as well
as Mammals), but also a wider selection of categories within a single
domain than theirs did. It is possible that this experimental context
created such a large level of background diversity that it dwarfed the
much smaller variation within the key Diversity argument pairs we
tested. This is consistent with previous work suggesting that Diversity
may be more elusive or context-dependent than many of the other phe-
nomena in Experiment 1 (López et al., 1997; López, Gelman, Gutheil,
& Smith, 1992; Proffitt, Coley, & Medin, 2000). For example, López
et al. (1992) found support for Similarity, Typicality and Specificity in
kindergarteners but no evidence for Diversity. If Diversity-based rea-
soning is relatively fragile, it may have little chance of emerging under
circumstances when participants must quickly rate a large number of

argument pairs from a wide variety of domains.
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4. Strengths and limitations of our data

Compared to existing property induction datasets, our data offer
several advantages. First, our data are relatively comprehensive; as far
as we know these datasets are the largest set of human property induc-
tion judgments ever collected. Second, the arguments in these data sets
were generated according to systematic procedures described above,
which improves on the common practice of working with a small set of
hand-crafted arguments. Finally, our data have been released publicly,
which allows future researchers to replicate our results, evaluate future
LLMs against our data, and explore aspects of our data that we have not
considered ourselves.

Despite these strengths, our data are subject to some important
limitations. In addition to our failure to replicate the effect of Diversity,
our data are somewhat noisy. For instance, Experiment 2 was inspired
by a study of Osherson et al. (1990) that asked participants to rank a
set of arguments, but we felt that GPT-3.5 (the best LLM at the time)
would be unable to handle this task. We therefore asked participants
to rate the strength of individual arguments, which allowed us to give
the same task to humans and LLMs. It also made it straightforward
to collect data for a relatively large set of arguments per domain.
Single argument ratings, however, are intrinsically noisy, which means
that our data may not provide enough resolution to identify all of the
factors that influence inductive reasoning in humans. Our first version
of Experiment 2 followed Osherson et al. (1990) in using general
arguments with three premises, but the resulting data were so noisy
that we considered them unreliable. We therefore simplified the task
and used general arguments with two premises, but as suggested above
the split-half reliabilities for multi-premise general arguments are still
relatively low.

Because a ranking task allows for direct comparisons between argu-
ments, ranking and rating are fundamentally different tasks that may
expose different aspects of inductive reasoning, and future work should
consider both tasks. Of the two, rating is the easier target for LLMs
because ranking requires information to be integrated across context
windows that include at least two arguments, and requires an element
of planning: in order to succeed, one must first find the strongest
argument, then the next strongest, and so on. Given that GPT-4 appears
to provide a good account of human argument ratings, future studies
should explore whether it still performs well when evaluated against
humans using a ranking task.

A final limitation of our data is that we worked with a convenience
sample recruited through Amazon Mechanical Turk. All of our partici-
pants previously passed a manually assessed qualification task measur-
ing English proficiency and meticulousness, and are thus consistently
more reliable than the general MTurk population. However, this does
not mean that this participant pool is completely unproblematic. Prop-
erty induction phenomena are known to vary across cultures (López
et al., 1997), developmental stages (López et al., 1992), and levels of
expertise (Proffitt et al., 2000), and it is not entirely clear which group
of people provide the most natural comparison to LLMs such as GPT-
4. From one perspective, GPT-4 has been trained on a vast body of
information about mammals, birds, and vehicles, and may therefore
be best compared with human experts. It seems possible, for example,
that our participants know relatively little about birds, and that GPT-4’s
responses would match the responses of domain experts more closely
than they matched the responses of our experimental participants. If
so, then evaluating GPT-4 against our human data could potentially
underestimate its true abilities.

4.1. What are the GPT models doing?

Our analyses characterize the performance of GPT models on prop-
erty induction tasks in some detail, but we have relatively little insight
into why the models behave as they do. At one level we understand
13

these models: we know that they are trained on vast corpora on
the task of predicting the next token, and that GPT-4 goes through
a second training phase that relies on reinforcement learning from
human feedback. But at another level these models remain opaque and
mysterious, and it is unclear how this training gives rise to some of the
behavior we observe.

At least three approaches can be used to develop a better under-
standing of large language models. We refer to them here as LLM
psychology, LLM neuroscience and LLM ecological analysis. LLM Psychol-
ogy (Binz & Schulz, 2023; Hagendorff, 2023) studies language models
using behavioral experiments, computational analyses and all of the
other techniques that psychologists have used to study human cognition
and behavior. Our work offers several examples of this. We relied heav-
ily on behavioral experiments to generate comparison data, and used
related techniques to explore how GPT models respond to inductive
problems as well as how sensitive they are to the way in which they are
prompted. Moreover, we also developed computational analyses that
build on psychological models such as the similarity-coverage model.

All of the analyses in this paper are thus examples of LLM cognitive
psychology. However, future work could draw on ideas from other
branches of psychology. For example, LLM developmental psychology
might aim to characterize the order in which inductive phenomena
appear over the course of training a language model, and the re-
sulting developmental sequence could be compared with analogous
developmental sequences in humans (López et al., 1992).

While LLM psychology focuses on data from behavioral studies,
LLM neuroscience goes beyond these studies by directly probing the
mechanisms that give rise to behavior. We took a simple step in this
direction by extracting and working with embeddings that are likely to
approximate the internal representations of GPT-3. Probing the internal
mechanisms that emerge in LLMs is an active area of research, but
there are already several approaches that could be used to gain a better
understanding of how GPT models evaluate inductive arguments (Li,
Nye, & Andreas, 2021; Olsson et al., 2022; Voita, Talbot, Moiseev,
Sennrich, & Titov, 2019). For example, since LLMs incorporate a set
of attention weights, analyzing these weights may reveal systematic
regularities in what parts of the premise(s) are weighted most highly by
a LLM while assessing an argument’s conclusion. A major challenge in
applying LLM neuroscience to GPT-3.5 and GPT-4 is that these models
are not open source, but other LLMs such as LLaMA (Touvron et al.,
2023) are publicly available and their internal mechanisms can be
studied in great detail.

A third approach, LLM ecological analysis, focuses less on the com-
putations carried out by LLMs and more on understanding the structure
of the data on which they are trained. These data constitute the
‘‘environment’’ of the LLM, and studying a LLM by analyzing its training
data is reminiscent of ‘‘rational analysis’’ (Anderson, 1990) and other
research programs (Brunswik, 1957; Simon, 1970; Todd & Gigerenzer,
2007) that aim to understand an organism’s behavior by characterizing
the environment in which the organism is embedded. For studies of
property induction, it may be valuable to explore the extent to which
premise and conclusion categories co-occur in the training data, and
to investigate whether and how LLMs go beyond models of inductive
reasoning that rely on co-occurrence alone. A more urgent question is
the extent to which the test tasks themselves (or highly similar ones)
were available in the training data (Frank, 2023; Magar & Schwartz,
2022; Mitchell, 2023). Most of the arguments in our data sets were
generated for this project rather than drawn from the literature, so it
seems unlikely that GPT-4 has previously seen these exact arguments.
Even so, the training data for GPT-4 presumably contain numerous
discussions of property induction, probably including the highly-cited
paper (Osherson et al., 1990) that introduced the inductive phenomena
we considered in Experiment 1. It seems possible that these components
of the training data are at last partially responsible for the high level
of performance achieved by GPT-4. Because the training data for GPT-
3.5 and GPT-4 are not publicly available, any systematic work on LLM
ecological analysis will need to consider models like LLaMA (Touvron

et al., 2023) where that data is openly accessible.
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4.2. Other inductive reasoning tasks

There is room for multiple future studies to explore how LLMs
respond to the items in our two datasets, but future work should also
explore how LLMs respond to other inductive tasks. Here we focused
on inferences about blank properties, and psychological work in this
tradition has identified several phenomena that go beyond the ones
we examined (Medin et al., 2003; Sloman, 1993). For example, Medin
et al. (2003) show that causal relationships lead to phenomena in-
cluding causal asymmetry (carrot → rabbit is stronger than rabbit →
arrot), causal violations of similarity (banana → monkey is stronger
han mouse → monkey) and diversity ({flea, butterfly} → sparrow is
tronger than {flea, dog} → sparrow). The same authors show that
rguments in which all premise categories share a salient property can
ead to non-monotonicity (e.g. brown bear → buffalo is stronger than
brown bear, polar bear, grizzly bear} → buffalo). We gave examples
ncluding the ones just described to GPT-3.5 and GPT-4, and the results
n Appendix E suggest that GPT-4 is sensitive to causal relationships
etween categories but may often struggle with non-monotonicity.

When evaluating an inductive argument, knowledge about the prop-
rty in question is usually just as important as knowledge about the
remise and conclusion categories, and several studies have docu-
ented property effects in inductive reasoning (Gelman & Markman,
986; Heit & Rubinstein, 1994; Smith, Shafir, & Osherson, 1993).
or example, Gelman (2007) shows that even young children rea-
on differently about biological properties (e.g. ‘‘has a spleen inside’’)
nd non-generalizable properties (e.g. ‘‘is dirty’’). Heit and Rubin-
tein (1994) considered both anatomical properties (e.g. ‘‘has sesamoid
ones’’) and behavioral properties (e.g. ‘‘usually gathers large amounts
f food at once’’), and found that these properties interacted with
natomical and behavioral similarity between premise and conclusion
ategories (e.g. goldfish → shark is stronger than wolf → shark for
natomical properties but not for behavioral properties). Although
here are numerous empirical studies of property effects in inductive
easoning, to our knowledge there are no psychological models that
an capture these effects in a general way; perhaps the closest is a
ormal account of human plausible reasoning developed by Collins
nd Michalski (1989). LLMs therefore qualify as the first ever models
hat seem theoretically capable of capturing a broad range of property
ffects, and future work should compare them with humans using
ystematic benchmarks that include inductive arguments with a variety
f non-blank properties. Appendix E includes example responses for
handful of relevant cases, and suggests that GPT-4 will struggle to

apture many of the property effects documented in the literature.
The psychological literature on property induction is somewhat

istinct from work on generalization (Shepard, 1987), categoriza-
ion (Pothos & Wills, 2011), identification (Kemp, Chang, & Lombardi,
010), and analogical reasoning (Vosniadou & Ortony, 1989), but all
f these topics can be viewed as special cases of inductive reason-
ng (Kemp & Jern, 2014). According to one standard definition, an
nference is inductive (or ampliative, or defeasible) if it reaches at

conclusion that does not follow with certainty from the available
vidence (Chater et al., 2011; Holland et al., 1986). From this perspec-
ive there are many different inductive problems, which opens up the
ossibility for a line of work that applies LLMs to inductive problems
rawn from many parts of the psychological literature. Existing work
long these lines includes studies that evaluate LLMs on commonsense
easoning tasks from benchmarks such as BIG-bench (Srivastava et al.,
022), and a study that explores analogical reasoning in LLMs (Webb
t al., 2022).

Appendix F includes responses of GPT-3.5 and GPT-4 to a range of
ther inductive problems, and these examples suggest the possibility of
eveloping multiple new benchmarks that explore different aspects of
nductive reasoning. Although the existing literature on LLMs explores
wide range of reasoning problems, our impression is that deductive
14

asks are currently slightly more prominent than inductive tasks. For
example, 59 of the 204 BIG-bench are tagged as ‘‘logical reasoning’’
tasks, and 50 are tagged as ‘‘commonsense reasoning’’ (Srivastava et al.,
2022). Chater et al. (2011, p 553), however, suggest that ‘‘many, and
perhaps even almost all, inferences outside mathematics involves un-
certain inductive inference’’ (p 553). Although inductive and deductive
reasoning are both important, future work on LLMs should perhaps pri-
oritize inductive reasoning because the majority of reasoning problems
encountered in everyday situations are inductive rather than deductive.

5. Conclusion

We compared inductive inferences in reasoning in humans and
large language models, and found that GPT-4 provides a relatively
good account of property induction in humans. At the time we began
this project GPT-3 was the most advanced model available to us, and
we correctly anticipated that this model would struggle to account
for many aspects of our data. GPT-4, however, performs substantially
better, which motivates future work on property effects and other
inductive phenomena that may be more challenging to capture than
most of the phenomena considered here.

Our work draws on AI and psychology and holds lessons for both
fields. For AI, our work suggests that evaluations of LLMs can draw
on psychological work on inductive reasoning. Moreover, our datasets
represent a step towards a large scale evaluative benchmark that could
be considered alongside other popular benchmarks. For psychology, our
work suggests that comprehensive benchmarks similar to those used in
evaluating LLMs can also valuable for understanding how humans learn
and reason. In comparing LLMs and people we realized that we do not
have a convincing theoretical account on either side of the comparison:
not only do we lack an understanding of how GPT-4 succeeds on these
tasks, but we also lack a detailed picture of how humans perform as
well. Psychological models such as the similarity-coverage model are
useful starting points, but they only account partially for our data, and
it is unclear whether they can be extended to handle phenomena such
as property effects. We hope that large language models point the way
towards psychological models that come closer to capturing the rich
intricacy of human inductive reasoning.
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Appendix A. Prompt variations from Experiment 1

Each of the possible prompts for GPT-4 was constructed by combining a system message with variations of four components. These four
components are the Context, Arguments, Question, and Options. Each variant for each component is shown below.

System: General, task-agnostic instructions
ID Description Format
S1 Default (blank)
S2 Be specific You are an intelligent language model that responds

exactly as people do. The questions you’ll see don’t
have right or wrong answers, and you are willing to
use your best judgment and commit to a concrete,
specific response even in cases where you can’t be
sure that you are correct.

S3 Domain expert You are an expert on X and the types of real world
properties that they have. The questions you’ll see
don’t have right or wrong answers, and you are
willing to use your best judgment and commit to a
concrete, specific response even in cases where you
can’t be sure that you are correct.

(X = living things or objects, depending on the domain)

Context: Explanation of the task and general task info
ID Description Format
C1 Same as human experiment We are interested in how people evaluate arguments.

On each trial there will be two arguments labeled ‘A’
and ‘B.’ Each will contain one, two, or three
statements separated from a claim by a line. Assume
that the statements above the line are facts, and
choose the argument whose facts provide a better
reason for believing the claim. These are subjective
judgments; there are no right or wrong answers.

C2 Same as C1, but used GPT-4 to paraphrase We aim to understand how individuals assess
arguments. In every trial, you will encounter two
arguments marked as ‘A’ and ‘B.’ Each argument may
have one, two, or three statements, which are
followed by a claim and separated by a line. Treat the
statements above the line as factual and select the
argument with facts that better support the claim.
Keep in mind that these evaluations are subjective,
and there are no correct or incorrect answers.

C3 Sparse context On each trial there will be two arguments labeled ‘A’
and ‘B.’ Each will contain one, two, or three
statements separated from a claim by a line. Assume
that the statements above the line are facts, and
choose the argument whose facts provide a better
reason for believing the claim.

C4 No context

Arguments: Structure of the arguments being rated
ID Description Format
A1 Same as human experiment Argument A: Fact - Dogs have property P.

Claim - All mammals have property P.
Argument B: Fact - Hedgehogs have property P.

Claim - All mammals have property P.
A2 Similar to A1, but minor rewording Argument A: Fact - Dogs possess property P.

Claim - All mammals possess property P.
Argument B: Fact - Hedgehogs possess property P.

Claim - All mammals possess property P.
A3 More natural Argument A: Based on the fact that dogs have property

P, we claim that all mammals have property P.
Argument B: Based on the fact that hedgehogs have
property P, we claim that all mammals have property
15

P.
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Question: How we ask GPT-4 to make a judgment
ID Description Format
Q1 Same as human experiment Question: Assuming all the facts given are true,

which argument makes a stronger case for the claim?
Q2 Simplest Question: Which argument makes a stronger case for

the claim?
Q3 Prompts reasoning Question: Assuming all the facts given are true,

which argument makes a stronger case for the claim?
To get the best answer, first write down your
reasoning. Then, based on this,

Q4 Prompts reasoning for properties Question: Assuming all the facts given are true,
which argument makes a stronger case for the claim?
To get the best answer, first write down your
reasoning about which real world properties
‘property P’ might be referring to. Then, based on
this,

Options: How we specify the format of the answer
ID Description Format
O1 Same as human experiment Indicate the strength of your preference by

providing one of the following options:
A - Argument A is much stronger
B - Argument A is stronger
C - Argument A is slightly stronger
D - Argument B is slightly stronger
E - Argument B is stronger
F - Argument B is much stronger

O2 Scale from 0 to 100 Indicate the strength of your preference by
providing a number between 0 and 100, where 0
corresponds to argument A being much stronger and 100
corresponds to argument B being much stronger.

Appendix B. Prompt variations from Experiment 2

As in Experiment 1, each of the possible prompts for GPT-4 was constructed by combining a system message with variations of four components.
The system message was the same as before and the variants for each of the other components are shown below.

Context: Explanation of the task and general task info
ID Description Format
C1 Same as human experiment We’re going to show you a series of claims relating to

living things and the properties they share. Rather
than mention any specific property (e.g. ‘‘Hyenas
have sesamoid bones’’) we’ll refer to an unspecified
property (e.g. ‘‘Hyenas have property P’’). Each
claim may be true or false, and to help you decide
which, we’ll provide you with facts about whether or
not other living things have the same property (e.g.
‘‘Lions have property P’’, and ‘‘Zebras have
property P’’).

C2 Sparse context We’re going to show you a series of claims relating to
living things and the properties they share. Rather
than mention any specific property we’ll refer to an
unspecified property. Each claim may be true or
false, and to help you decide which, we’ll provide
you with facts about whether or not other living
things have the same property.
16
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Arguments: Structure of the arguments being rated
ID Description Format
A1 Same as human experiment Argument A: Fact - Dogs have property P.

Claim - All mammals have property P.
A2 Minor reword of A1 Argument A: Fact - Dogs possess property P.

Claim - All mammals possess property P.
A3 More natural Argument A: Based on the fact that dogs have property

P, we claim
that all mammals have property P.

Question: how we ask GPT-4 to make a judgment
ID Description Format
Q1 Same as human experiment Question: Given the facts presented, how likely is it

that the claim is true?
Q2 Simplest Question: How likely is it that the claim is true?
Q3 Prompts reasoning Question: Given the facts presented, how likely is it

that the claim is true? To get the best answer, first
write down your reasoning. Then, based on this,

Q4 Prompts reasoning for properties Question: Given the facts presented, how likely is it
that the claim is true? To get the best answer, first
write down your reasoning about which real world
properties ‘property P’ might be referring to. Then,
based on this,

Options: How we specify the format of the answer
ID Description Format
O1 Same as human experiment Indicate your answer by providing a number between 0

and 100, where 0 means that the claim is very unlikely
and 100 means that the claim is very likely.

O2 Six choice options Indicate your answer by providing one of the
following options:
A - The claim is very unlikely
B - The claim is moderately unlikely
C - The claim is slightly unlikely
D - The claim is slightly likely
E - The claim is moderately likely
17
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.

Trials: inserted practice trials after context and before main trials
ID Description Format
T1 Same as human experiment This section contains a series of claims that include

only one supporting fact. Before we start, we’ll give
you two examples as practice.

Argument A: Fact - Papayas have property P.
Claim - All fruits have property P.

Question: Given the facts presented, how likely is it
that the claim is true? Indicate your answer by
providing a number between 0 and 100, where 0 means that
the claim is very unlikely and 100 means that the claim
is very likely.

[GPT-4 completion assistant message]

Argument A: Fact - Apples have property P.
Claim - All fruits have property P.

Question: Given the facts presented, how likely is it
that the claim is true? Indicate your answer by
providing a number between 0 and 100, where 0 means that
the claim is very unlikely and 100 means that the claim
is very likely.

[GPT-4 completion assistant message]
T2 No trials

Appendix C. Property induction phenomena from Experiment 1

Table C.7 shows responses for all of the argument pairs listed in Table 1. The prompts used the same format shown in Table 3, and Table C.7
shows the first result obtained for each prompt (we did not query GPT-3.5 and GPT-4 multiple times and select among the responses).

Because there is a single prompt for each phenomenon and Table C.7 includes only a single response to each prompt, the results in this table
and in the appendices that follow are little more than anecdotal. Even so they suggest that GPT-4 often explains its choices in ways that seem
sensible and invoke some of the key notions such as similarity (row 7), typicality (row 2) and diversity (row 6) considered in the psychological
literature on property induction. The explanations offered by GPT-4 are also usually more convincing than those provided by GPT-3.5. Because
non-monotonicity is the most important phenomenon not consistently captured by GPT-4, the responses for the non-monotonicity pairs are of
particular interest. GPT-4’s response in row 9 suggests that additional positive examples provide additional support for the conclusion, which is an
appropriate explanation of monotonicity, but does not capture how people tend to think about non-monotonicity. GPT-4’s response in row 8 actually
shows a non-monotonicity effect, but the explanation provided is unconvincing — according to that explanation both arguments in the pair should
be equally strong.

Table C.7
Responses for argument pairs illustrating the eleven inductive phenomena in Experiment 1. In all cases argument A is stronger according to data reported by Osherson et al. (1990)

Phenomenon GPT-4 GPT-3.5

(1) Similarity

Argument A:
Robins
Bluejays
→ Sparrows

Argument B:
Robins
Bluejays
→ Geese

Robins, Bluejays, and Sparrows are all small birds that
belong to the passerine order. Geese, on the other hand,
are larger birds that belong to the Anseriformes order.
Since the facts provided in both arguments are the same,
we can assume that property P might be more likely to be
shared among birds that are more closely related. Based
on this reasoning, I would choose option B - Argument A is
moderately stronger.

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A provides two facts that
support the claim that sparrows have property P,
which is more evidence than Argument B provides
for the claim that geese have property P.
Therefore, Argument A makes a moderately stronger
case for the claim.

(continued on next page)
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Table C.7 (continued).
Phenomenon GPT-4 GPT-3.5

(2) Typicality

Argument A:
Robins
→ All birds

Argument B:
Penguins
→ All birds

Robins are more representative of the typical bird, as
they can fly and have many features that are commonly
associated with birds. Penguins, on the other hand, are
flightless and have some unique features that set them
apart from other birds. Therefore, if a property is found
in robins, it is more likely to be found in other birds as
well, compared to if the property is found in penguins.
Based on this reasoning, I would choose option B -
Argument A is moderately stronger.

C - Argument A is slightly stronger.
The fact that robins have property P provides
some evidence that all birds have property P, but
the fact that penguins have property P provides
stronger evidence that all birds have property P.
Therefore, Argument B makes a slightly stronger
case for the claim than Argument A.

(3) Specificity

Argument A:
Bluejays
Falcons
→ All birds

Argument B:
Bluejays
Falcons
→ All animals

Both arguments are based on the same facts, which are
that Bluejays and Falcons have property P. Bluejays and
Falcons are both types of birds, so it is more reasonable
to generalize the property P to all birds rather than all
animals. Generalizing to all animals would require more
diverse examples of animals having property P. Based on
this reasoning, I would choose option B - Argument A is
moderately stronger.

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A makes a stronger case for
the claim because it is more specific and limited
in scope. It states that all birds have property
P, which is supported by the facts given.
Argument B states that all animals have property
P, which is not supported by the facts given since
only birds have been mentioned. Therefore,
Argument A is moderately stronger.

(4) Monotonicity
(General)

Argument A:
Sparrows
Eagles
Hawks
→ All birds

Argument B:
Sparrows
Eagles
→ All birds

Argument A provides three examples of birds with property
P, while Argument B provides only two examples. Having
more examples of birds with property P strengthens the
case for the claim that all birds have property P. Based
on this reasoning, I would choose option B - Argument A is
moderately stronger.

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A provides more evidence for
the claim that all birds have property P, as it
includes three facts that support the claim.
Argument B only includes two facts, which is not
as strong of a case for the claim. Therefore,
Argument A is moderately stronger than Argument
B.

(5) Monotonicity
(Specific)

Argument A:
Pigs
Wolves
Foxes
→ Gorillas

Argument B:
Pigs
Wolves
→ Gorillas

Argument A provides more evidence for the claim by
including an additional animal (foxes) that has property
P. This additional evidence strengthens the argument by
showing that property P is more widespread among animals,
making it more likely that gorillas might also have
property P. Based on this reasoning, I would choose
option B - Argument A is moderately stronger.

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A provides more evidence for
the claim that gorillas have property P, as it
includes three facts that all support the claim.
Argument B only includes two facts, so it provides
less evidence for the claim. Therefore, Argument
A is moderately stronger than Argument B.

(6) Diversity
(General)

Argument A:
Hippos
Hamsters
→ All mammals

Argument B:
Hippos
Rhinos
→ All mammals

Argument A provides evidence that both a large aquatic
mammal (hippo) and a small terrestrial mammal (hamster)
have property P. Argument B provides evidence that two
large, semi-aquatic mammals (hippo and rhino) have
property P. Since Argument A includes a wider range of
mammals in terms of size and habitat, it provides a
slightly better case for the claim that all mammals have
property P. Answer: C - Argument A is slightly stronger

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A provides two examples of
mammals that have property P, while Argument B
provides only one. This suggests that Argument A
provides a better case for the claim that all
mammals have property P.

(continued on next page)
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Table C.7 (continued).
Phenomenon GPT-4 GPT-3.5

(7) Diversity
(Specific)

Argument A:
Lions
Giraffes
→ Rabbits

Argument B:
Lions
Tigers
→ Rabbits

In Argument A, we have two animals with property P - lions
and giraffes. Lions are carnivorous mammals, while giraffes
are herbivorous mammals. In Argument B, we have lions and
tigers with property P, both of which are carnivorous
mammals. Since rabbits are herbivorous mammals, they share
a more similar trait with giraffes than with lions or
tigers. Therefore, the presence of an herbivorous mammal
(giraffe) in Argument A makes it slightly more likely that
rabbits might also have property P. Answer: C - Argument A
is slightly stronger

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A provides two facts that
are both relevant to the claim, which makes it
a moderately stronger argument than Argument
B, which only provides one relevant fact.

(8)
Non-monotonicity
(General)

Argument A:
Crows
Peacocks
→ All birds

Argument B:
Crows
Peacocks
Rabbits
→ All birds

Both arguments A and B have the same claim that all birds
have property P. Argument A provides two examples of birds
(crows and peacocks) having property P, while Argument B
provides the same two examples of birds plus an additional
example of a non-bird (rabbits) having property P. The
inclusion of rabbits in Argument B does not strengthen the
claim about birds, as rabbits are not birds. Therefore, the
additional fact in Argument B does not contribute to the
claim about birds. Based on this reasoning, I would choose
option C - Argument A is slightly stronger. This is because
both arguments have the same bird examples, but Argument B
includes an irrelevant fact about rabbits that does not
contribute to the claim about birds.

Answer: E - Argument B is moderately stronger.
Reasoning: Argument B provides more evidence
for the claim that all birds have property P by
providing an additional fact that rabbits have
property P. This additional fact strengthens
the argument that all birds have property P,
making Argument B moderately stronger than
Argument A

(9)
Non-monotonicity
(Specific)

Argument A:
Flies
→ Bees

Argument B:
Flies
Orangutans
→ Bees

Argument A only provides one example of an animal (flies)
having property P. Argument B, on the other hand, provides
two examples of animals (flies and orangutans) having
property P. Although neither flies nor orangutans are
closely related to bees, the fact that two different
animals have property P makes it more likely that bees might
also have property P. Based on this reasoning, my
preference is: E - Argument B is moderately stronger

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A provides one fact that
supports the claim that bees have property P,
while Argument B provides two facts that
support the claim. Therefore, Argument B makes
a stronger case for the claim that bees have
property P.

(10) Asymmetry

Argument A:
Mice
→ Bats

Argument B:
Bats
→ Mice

Mice and bats are both mammals, but they belong to different
orders (Rodentia and Chiroptera, respectively). While they
share some common features, they also have many
differences. In this case, it is not clear what property P
is, so it is difficult to determine how likely it is that one
species having property P would imply the other species
also has it. However, bats are more closely related to other
mammals like primates and carnivores than they are to
rodents like mice. This means that if a property is found in
bats, it might be more likely to be found in other mammals,
including mice. On the other hand, if a property is found in
mice, it might be less likely to be found in more distantly
related mammals like bats. Based on this reasoning, I would
choose option E - Argument B is moderately stronger.

Answer: F - Argument B is much stronger.
The fact given in Argument B directly supports
the claim, while the fact given in Argument A
does not. Therefore, Argument B makes a much
stronger case for the claim than Argument A.

(continued on next page)
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Table C.7 (continued).
Phenomenon GPT-4 GPT-3.5

(11) Inclusion
Fallacy

Argument A:
Robins
→ All birds

Argument B:
Robins
→ Ostriches

Argument A makes a general claim about all birds, while
Argument B makes a specific claim about ostriches. Since
robins and ostriches are both birds, knowing that robins
have property P provides some evidence that ostriches might
also have property P. However, it does not provide strong
evidence that all birds have property P, as there are many
different types of birds with varying properties. Based on
this reasoning, I would choose option D - Argument B is
slightly stronger.

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A makes a stronger case
for the claim because it states that all birds
have property P, which is supported by the fact
that robins have property P. Argument B states
that ostriches have property P, but does not
provide any evidence to support this claim.
Therefore, Argument A is moderately stronger.

Appendix D. Results for other OpenAI models

We began this project when GPT-3 (davinci) was the best performing OpenAI model available, and updated our work as subsequent versions
of GPT-3, GPT-3.5 and GPT-4 were released. Our primary analysis focuses on GPT-3.5 (text-davinci-003) and GPT-4 because they are the
best performing completion and chat based OpenAI models respectively, but here we provide results for all models that we analyzed.

For Experiment 1, Table D.8 provides a quantitative evaluation of GPT-3.5’s chat variant (gpt-3.5-turbo-0613) alongside the other models
that we report in Table 4 for the argument pair rating task. Although we ran this analysis on other GPT-3 and GPT-3.5 variants including davinci,
text-davinci-001 and text-davinci-002, we found that these models largely failed to respond appropriately to our prompt, which may
not be surprising because this prompt was optimized for GPT-4.

Like GPT-4, GPT-3.5’s chat variant captures the phenomena of specificity and monotonicity, and it also leans towards predicting the opposite
argument from humans for non-monotonicity. GPT-3.5’s chat variant, however, fails to capture similarity and typicality as robustly as does GPT-4,
and also displays more sensitivity towards the inclusion fallacy.

For Experiment 2, Fig. D.7 displays model correlations with humans for our rating task across five models: text-davinci-001, text-
davinci-002, text-davinci-003, gpt-3.5-turbo and GPT-4. Like our analysis for Experiment 1, we also attempted to gather results for
davinci, but found that our GPT-4 optimized prompt did not work on models that lacked instruction tuning.

In general, we found that the differences between the GPT models are relatively small. The most striking difference is the degradation that can
be observed across the models for single premise general arguments. We believe that this finding may reflect recent alignment efforts to prevent
models from making broad generalizations (‘Claim - All X have property P’) based on user prompts that contain limited information.

Fig. D.7. Correlations (Spearman’s 𝜌) between human argument rankings and rankings of GPT-3 (text-davinci-001), GPT-3.5 (text-davinci-002, text-davinci-003 and chat-turbo),
and GPT-4.
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Table D.8
Quantitative evaluation of GPT-3.5 (text-davinci-003), GPT-3.5 (chat-turbo), GPT-4 and Humans on the 11 phenomena across all three domains.
Phenomenon Domain GPT-3.5

(text-davinci-003)
GPT-3.5
(chat-turbo)

GPT-4 Humans

Similarity Mammals 0.17 0.17 <0.001 * <0.001 *
Birds 0.69 0.4 <0.001 * <0.001 *
Vehicles 0.11 <0.001 * <0.001 * <0.001 *

Typicality Mammals 0.54 0.29 <0.02 * <0.001 *
Birds 0.54 0.15 <0.001 * <0.001 *
Vehicles 1.0 <0.02 * <0.001 * <0.001 *

Specificity Mammals 0.84 <0.001 * <0.001 * <0.001 *
Birds 0.84 <0.001 * <0.001 * <0.001 *
Vehicles 0.54 <0.001 * <0.001 * <0.001 *

Monotonicity Mammals <0.02 * <0.001 * <0.001 * <0.001 *
(General) Birds 0.54 <0.001 * <0.001 * <0.001 *

Vehicles <0.001 * <0.001 * <0.001 * <0.001 *

Monotonicity Mammals 0.31 <0.001 * <0.001 * 0.06
(Specific) Birds 0.84 <0.001 * <0.001 * <0.001 *

Vehicles 0.84 <0.001 * <0.001 * 0.29

Diversity Mammals 0.84 0.31 <0.001 * 0.06
(General) Birds 0.54 0.15 <0.001 * 1.0

Vehicles 1.0 0.84 0.06 < 0.03◦

Diversity Mammals 1.0 1.0 0.15 < 0.01◦
(Specific) Birds 0.54 0.68 0.84 0.68

Vehicles 0.31 0.4 0.15 0.68

Nonmonotonicity Mammals < 0.001◦ 1.0 <0.02 * <0.001 *
(General) Birds 0.31 0.06 <0.001 * <0.001 *

Vehicles 0.84 < 0.02◦ 0.15 <0.01 *

Nonmonotonicity Mammals 1.0 < 0.001◦ < 0.001◦ 0.15
(Specific) Birds 0.15 < 0.001◦ < 0.001◦ <0.001 *

Vehicles 1.0 < 0.001◦ < 0.001◦ <0.01 *

Asymmetry Mammals 0.06 0.82 0.68 0.4
Birds 0.06 0.84 1.0 <0.001 *
Vehicles 0.54 0.09 0.82 0.05

Inclusion Mammals 0.84 <0.001 * 0.06 0.06
Fallacy Birds 0.84 <0.02 * < 0.001◦ 1.0

Vehicles 0.54 0.06 0.54 <0.001 *

Appendix E. Other property induction phenomena

Table E.9 illustrates a range of property induction phenomena from the literature that were not explored in our experiments but can be
systematically explored in future work. As in Appendix C, the prompts matched the format shown in Table 3, and Table E.9 shows the first
model response we obtained for each argument pair.

The first four rows of the table illustrate phenomena described by Medin et al. (2003) that involve inferences about blank properties. GPT-4
provides relatively compelling responses to the first two argument-pairs, but the explanation given for the third pair is unconvincing (birds and
mammals are both vertebrates so it is not clear that birds are more closely related to mammals than to insects). The fourth pair illustrates that
non-monotonicity can arise for reasons that differ from those captured by our non-monotonicity stimuli in Experiment 1. In that experiment non-
monotonicity was achieved by adding a premise drawn from a different superordinate category, but the fourth row shows that non-monotonicity
can also arise when all premises share a very salient feature (e.g. the feature of being bears) which makes it less likely that ‘‘Property P’’ extends
outside the set of items with that feature. GPT-4’s response to the fourth pair suggests that it may struggle with non-monotonicity effects in general,
not just with the variety of non-monotonicity explored in Experiment 1.

The final six rows in Table E.9 all involve arguments with non-blank predicates. They include four cases (rows 5,6,8 and 10) in which the specific
predicate used overturns inferences that would be expected on the basis of overall similarity between the premise and conclusion categories. For
example, german shepherds are more similar to dobermanns than to poodles, but learning that poodles ‘‘bite through wire’’ provides more evidence
that german shepherds have the same property than learning that dobermanns bite through wire. Similarly, mosquitoes are more similar to ladybugs
than to vampire bats, but learning that vampire bats ‘‘travel at speeds of twice their body length per second’’ after eating provides more evidence
that mosquitoes have the same property than learning that ladybugs have the property. Across all four cases, GPT-4 gives responses that are
consistent with overall similarity between premise and conclusion categories rather than the specific properties used in the arguments, suggesting
that the model provides a relatively poor account of inferences about non-blank properties. In contrast, people appear to rely on similarity only
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Table E.9
Phenomena from the property induction literature that go beyond those tested in our analyses. All argument pairs are either identical to or modeled on pairs for which average
human ratings indicate that argument A is stronger than argument B.

Phenomenon GPT-4 GPT-3.5

(1) Causal asymmetry
(Medin et al., 2003)
Argument A:
F - Carrots have property P.
C - Rabbits have property P.
Argument B:
F - Rabbits have property P.
C - Carrots have property P.

Carrots are a type of vegetable, while
rabbits are animals. It is more likely that a
property found in a vegetable could be
present in an animal that consumes it, rather
than a property found in an animal being
present in the vegetable it consumes. This is
because animals can obtain certain
properties from their diet, while vegetables
do not obtain properties from the animals
that consume them.
Based on this reasoning, I would choose
option B - Argument A is moderately stronger

Answer: E - Argument B is moderately stronger.
Reasoning: Argument B provides direct
evidence that rabbits have property P, while
Argument A does not provide any direct
evidence that rabbits have property P.
Therefore, Argument B makes a stronger case
for the claim that carrots have property P

(2) Causal violations of similarity
(Medin et al., 2003)
Argument A:
F - Bananas have property P.
C - Monkeys have property P.
Argument B:
F - Mice have property P.
C - Monkeys have property P.

Monkeys are more closely related to bananas
in terms of their diet and habitat, as they
are known to consume bananas and live in
regions where bananas grow. Mice, on the
other hand, have a more distant relationship
with monkeys in terms of their diet and
habitat. Therefore, it is more likely that a
property found in bananas could also be found
in monkeys, as opposed to a property found in
mice.
Based on this reasoning, I would choose
option B - Argument A is moderately stronger.

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A provides a direct
connection between the fact and the claim, as
bananas are a type of fruit that monkeys eat.
Argument B provides an indirect connection,
as mice are not typically associated with
monkeys. Therefore, Argument A provides a
moderately stronger case for the claim that
monkeys have property P.

(3) Causal nondiversity
(Medin et al., 2003)
Argument A:
F - Fleas have property P.
F - Butterflies have property P.
C - Sparrows have property P.
Argument B:
F - Fleas have property P.
F - Dogs have property P.
C - Sparrows have property P.

Fleas and butterflies are both insects, while
dogs are mammals. Sparrows are birds, which
are more closely related to insects than
mammals in terms of taxonomy. Therefore, the
fact that both fleas and butterflies have
property P might be more relevant to the claim
that sparrows have property P than the fact
that fleas and dogs have property P.
Based on this reasoning, I would choose
option B - Argument A is moderately stronger.

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A provides two facts that
are both relevant to the claim, which makes it
a moderately stronger argument than Argument
B, which only provides one relevant fact.

(4) Non-monotonicity via property
reinforcement
(Medin et al., 2003)
Argument A:
F - Brown bears have property P.
C - Buffalos have property P.
Argument B:
F - Brown bears have property P.
F - Polar bears have property P.
F - Grizzly bears have property P.
C - Buffalos have property P.

Argument A provides only one fact, that brown
bears have property P. Argument B provides
three facts, that brown bears, polar bears,
and grizzly bears all have property P.
Although none of these animals are closely
related to buffalos, Argument B provides more
evidence of property P being present in a
wider range of animals, which could
potentially increase the likelihood that
buffalos also have property P.
Based on this reasoning, I would choose
option D - Argument B is slightly stronger

Answer: E - Argument B is moderately stronger.
Reasoning: Argument B provides more evidence
for the claim that buffalos have property P by
providing three facts about other animals
that have property P. This makes the argument
stronger than Argument A, which only provides
one fact.

(5) Property effects
(Smith et al., 1993)
Argument A:
F - Poodles can bite through wire.
C - German shepherds can bite
through wire.
Argument B:
F - Dobermanns can bite through
wire.
C - German shepherds can bite
through wire.

Both Poodles and Dobermanns are different
breeds of dogs, just like German Shepherds.
While Poodles are known for their
intelligence and agility, Dobermanns are
known for their strength and guarding
abilities. German Shepherds are also known
for their strength, intelligence, and
guarding abilities. Since Dobermanns and
German Shepherds share more similar
characteristics in terms of strength and
function, it is more likely that if
Dobermanns can bite through wire, German
Shepherds can as well.
Preference: E - Argument B is moderately
stronger

Answer: E - Argument B is moderately stronger.
Reasoning: Argument B provides a more direct
connection between the fact and the claim, as
it states that a Dobermann, which is a type of
German shepherd, can bite through wire. This
is a more specific example than the fact
provided in Argument A, which only states
that poodles can bite through wire.
Therefore, Argument B makes a moderately
stronger case for the claim that German
shepherds can bite through wire.

(continued on next page)
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Table E.9 (continued).
Phenomenon GPT-4 GPT-3.5

(6) Property effects
(Smith et al., 1993)
Argument A:
F - House cats have skins that are
more resistant to penetration
than most synthetic fibers.
C - Hippos have skins that are
more resistant to penetration
than most synthetic fibers.
Argument B:
F - Elephants have skins that are
more resistant to penetration
than most synthetic fibers.
C - Hippos have skins that are
more resistant to penetration
than most synthetic fibers.

Both house cats and elephants have skin that
is more resistant to penetration than most
synthetic fibers. However, elephants are more
similar to hippos in terms of size, habitat,
and overall biology than house cats are.
Therefore, it is more likely that the skin
properties of elephants would be a better
indicator of the skin properties of hippos.
Based on this reasoning, I would choose
option F - Argument B is much stronger.

Answer: E - Argument B is moderately stronger.
Reasoning: Argument B provides a more direct
comparison to the claim, as it states that
elephants have skin that is more resistant to
penetration than most synthetic fibers. This
is a more direct comparison to the claim that
hippos have skin that is more resistant to
penetration than most synthetic fibers.
Argument A only states that house cats have
skin that is more resistant to penetration
than most synthetic fibers, which is not as
direct of a comparison. Therefore, Argument B
makes a moderately stronger case for the
claim.

(7) Property effects
(Heit & Rubinstein, 1994)
Argument A:
F - Chickens have livers with two
chambers that act as one.
C - Hawks have livers with two
chambers that act as one.
Argument B:
F - Tigers have livers with two
chambers that act as one.
C - Hawks have livers with two
chambers that act as one.

Chickens and hawks are both birds, while
tigers are mammals. Since the claim is about
hawks, it is more likely that the liver
structure of another bird (chicken) would be
similar to that of a hawk than the liver
structure of a mammal (tiger).
Based on this reasoning, I would choose
option B - Argument A is moderately stronger.

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A provides a direct
comparison between chickens and hawks, which
are both birds, and suggests that hawks
likely have livers with two chambers that act
as one. Argument B provides a comparison
between tigers and hawks, which are not
closely related, and does not provide as
strong of evidence that hawks have livers
with two chambers that act as one.

(8) Property effects
(Heit & Rubinstein, 1994)
Argument A:
F - Tigers usually gather large
amounts of food at once.
C - Hawks usually gather large
amounts of food at once.
Argument B:
F - Chickens usually gather large
amounts of food at once.
C - Hawks usually gather large
amounts of food at once.

Both tigers and chickens are not closely
related to hawks, as tigers are mammals and
chickens are birds but not birds of prey.
However, chickens might be slightly more
related to hawks than tigers, as they are both
birds. Therefore, the fact that chickens
gather large amounts of food at once might be
a slightly better indicator of hawks’
behavior than the fact that tigers do the
same.
Based on this reasoning, my preference is: D -
Argument B is slightly stronger

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A provides a more
relevant fact than Argument B, as tigers and
hawks are both predatory animals that hunt
for food, while chickens are not. Therefore,
Argument A provides a better reason for
believing the claim that hawks usually gather
large amounts of food at once.

(9) Property effects
(Heit & Rubinstein, 1994)
Argument A:
F - Ladybugs have some cells in
their respiratory systems that
require carbon dioxide to
function.
C - Mosquitoes have some cells in
their respiratory systems that
require carbon dioxide to
function.
Argument B:
F - Vampire bats have some cells
in their respiratory systems that
require carbon dioxide to
function.
C - Mosquitoes have some cells in
their respiratory systems that
require carbon dioxide to
function.

Ladybugs and mosquitoes are both insects,
while vampire bats are mammals. Since insects
are more closely related to each other than
they are to mammals, it is more likely that
they share similar respiratory system
properties.
Based on this reasoning, I would choose
option B - Argument A is moderately stronger.

Answer: E - Argument B is moderately stronger.
Reasoning: Argument B provides a more
specific example of an animal with cells in
its respiratory system that require carbon
dioxide to function, which makes it a stronger
argument for the claim that mosquitoes have
some cells in their respiratory systems that
require carbon dioxide to function.

(continued on next page)
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Table E.9 (continued).
Phenomenon GPT-4 GPT-3.5

(10) Property effects
(Heit & Rubinstein, 1994)
Argument A:
F - After eating, vampire bats
travel at speeds of twice their
body length per second.
C - After eating, mosquitoes
travel at speeds of twice their
body length per second.
Argument B:
F - After eating, ladybugs travel
at speeds of twice their body
length per second.
C - After eating, mosquitoes
travels at speeds of twice their
body length per second.

Vampire bats, ladybugs, and mosquitoes are
all different types of animals with distinct
characteristics. Vampire bats are mammals,
ladybugs are insects, and mosquitoes are also
insects. Since ladybugs and mosquitoes are
both insects, they share more similarities in
terms of their body structure and movement
patterns compared to vampire bats.
Therefore, the fact about ladybugs might
provide a better basis for making a claim
about mosquitoes.
Based on this reasoning, I would choose
option E - Argument B is moderately stronger.

Answer: B - Argument A is moderately stronger.
Reasoning: Argument A provides a fact about
vampire bats, which are closely related to
mosquitoes, and thus provides some evidence
that the claim about mosquitoes may be true.
Argument B provides a fact about ladybugs,
which are not closely related to mosquitoes,
and thus provides less evidence that the
claim about mosquitoes may be true.
Therefore, Argument A provides a moderately
stronger case for the claim.

Appendix F. Other inductive phenomena

Property induction is sometimes considered separately from other inductive problems such as categorization and generalization, but all of these
problems are so closely related that it makes little sense to separate them when developing theories of induction (Kemp & Jern, 2014). Table F.10
includes model responses to an illustrative set of problems from the broader literature on inductive reasoning.

Table F.10
Phenomena from the broader literature on inductive reasoning.

Phenomenon GPT-4 GPT-3.5

(1) Feature inference
(Kemp, 2011)
Animal A has scales and
can fly. How likely is it
that Animal A has wings?

It is likely that Animal A has wings, as the ability
to fly is typically associated with the presence of
wings. However, the presence of scales is unusual
for a flying animal, as most animals with scales
(such as reptiles) do not have wings. This suggests
that Animal A might be an atypical or fictional
creature. Nonetheless, given the information
provided, I would estimate that there is a 70%
chance that Animal A has wings, considering that
wings are a common adaptation for flight.

It is very likely that Animal A has wings, as
most animals with scales and the ability to fly
have wings. However, there are some
exceptions, such as some species of fish that
can fly, so it is not certain that Animal A has
wings.

(2) Feature inference
(Kemp, 2011)
Animal A has scales and
two legs. How likely is it
that Animal A has wings?

It is moderately likely that Animal A has wings. The
presence of scales suggests that Animal A could be a
reptile, and the two legs could indicate that it is
a bipedal creature. Some reptiles, like certain
species of lizards, have wing-like structures that
allow them to glide or fly short distances. However,
it is not guaranteed that Animal A has wings, as
there are also many reptiles with scales and two
legs that do not have wings. Without more
information, it is difficult to determine the exact
likelihood, but based on the given characteristics,
I would estimate that there is a moderate chance
that Animal A has wings.

It is difficult to say how likely it is that
Animal A has wings without knowing more
information about the animal. If Animal A is a
reptile, then it is unlikely that it has wings,
as most reptiles do not have wings. However, if
Animal A is a bird, then it is more likely that
it has wings, as most birds have wings.
Ultimately, without more information, it is
impossible to say how likely it is that Animal
A has wings.

(3) Plausible reasoning
(Collins & Michalski, 1989)
Do you think they might
grow rice in Florida?

Yes, I think they might grow rice in Florida.
Florida has a warm, subtropical climate with plenty
of rainfall, which is suitable for growing rice.
Additionally, the state has large areas of flat land
and abundant water resources, which are essential
for rice cultivation. However, rice production in
Florida might not be as extensive as in other major
rice-growing states like California, Arkansas, or
Texas. The primary crops in Florida are citrus
fruits, sugarcane, and vegetables, but it is still
possible that rice is grown on a smaller scale or
for local consumption.

It is possible to grow rice in Florida, but it
is not common. Rice requires a lot of water and
a long growing season, both of which are not
typically found in Florida. Additionally, the
soil in Florida is not ideal for growing rice.
While it is possible to grow rice in Florida,
it is not likely to be successful.

(continued on next page)
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Table F.10 (continued).
Phenomenon GPT-4 GPT-3.5

Plausible reasoning
(4) (Collins & Michalski, 1989)
Can a goose quack?

A goose does not quack like a duck. Geese make a
variety of vocalizations, including honking,
hissing, and cackling. The primary sound a goose
makes is a honk, which is different from a duck’s
quack. The honk is a louder and more assertive
sound, often used by geese to communicate with each
other or to warn off potential threats. While both
ducks and geese are waterfowl and share some
similarities, their vocalizations are distinct from
one another.

No, a goose cannot quack. Geese make a honking
sound, while ducks make a quacking sound.

(5) Theory-based categorization
(Rips, 1989)
I have a circle-shaped
object that is 3 inches in
diameter. Do you think
it’s more likely to be a
pizza or a quarter?

I think it’s more likely to be a quarter. A 3-inch
diameter is quite small for a pizza, as most
personal-sized pizzas are at least 6 inches in
diameter. On the other hand, a quarter is
approximately 0.955 inches in diameter, which is
closer to 3 inches than a typical pizza size. While
a 3-inch diameter is still larger than a standard
quarter, it’s more plausible that it could be an
oversized novelty quarter or a similarly sized
coin, rather than an unusually small pizza.

Based on the size of the object, it is more
likely to be a quarter than a pizza. A quarter
is approximately 1.2 inches in diameter, so
the object is more than twice the size of a
quarter. A pizza, on the other hand, is
typically much larger than 3 inches in
diameter.

(6) Theory-based categorization
(Murphy & Medin, 1985)
You are at a party and you
learn that one of the
guests fell into the pool.
Why do you think this
happened?

I think the guest fell into the pool due to a
combination of factors, such as being distracted,
possibly consuming alcohol, and being too close to
the pool’s edge. It’s common for people to be
engaged in conversations or other activities at a
party, which can lead to a lack of awareness of
their surroundings. Additionally, if the guest had
been drinking, their coordination and balance might
have been impaired, making it more likely for them
to accidentally fall into the pool. Finally,
standing or walking too close to the pool’s edge
increases the risk of slipping or losing balance and
falling in.

It is difficult to say why the guest fell into
the pool without knowing more information. It
is possible that the guest was not paying
attention and accidentally stepped into the
pool, or that they were pushed or slipped. It
is also possible that the guest was
intoxicated and lost their balance.

(7) Theory-based categorization
(Keil, 1989)
The doctors took a raccoon
and shaved away some of
its fur. They dyed what
was left all black. Then
they bleached a single
stripe all white down the
center of its back. Then,
with surgery, they put in
its body a sac of super
smelly odor, just like a
skunk has. When they were
done, the animal looked
just like a skunk. After
the operation was this a
skunk or a raccoon?

After the operation, the animal is still a raccoon.
Despite the changes made to its appearance and the
addition of a smelly odor sac, its genetic makeup
and species remain that of a raccoon. The
modifications made by the doctors only altered its
external appearance and gave it a skunk-like
feature, but these changes do not transform the
raccoon into a different species. The animal’s
identity is determined by its genetic makeup and
biological characteristics, not just its
appearance.

This is a difficult question to answer
definitively because it depends on how you
define a skunk and a raccoon. From a physical
standpoint, the animal looks like a skunk
because it has the same physical features.
However, genetically, it is still a raccoon
because it has not been altered in any way to
change its species. Therefore, it is both a
skunk and a raccoon.

(8) Theory-based categorization
(Keil, 1989)
The doctors took a
coffeepot. They sawed off
the handle, sealed the
top, took off the top
knob, sealed closed the
spout, and sawed it off.
They also sawed off the
base and attached a flat
piece of metal. They
attached a little stick,
cut a window in it, and
filled the metal
container with bird food.
After the operation was
this a coffeepot or a bird
feeder?

After the operation, this object can be considered a
bird feeder. The reason for this classification is
that the original function and features of the
coffeepot have been significantly altered and
repurposed to serve as a container for bird food.
The handle, top knob, and spout have been removed
and sealed, and a window has been cut to allow birds
access to the food. The addition of a flat piece of
metal and a stick further supports its new function
as a bird feeder. While it may have originated as a
coffeepot, its current form and purpose align more
closely with that of a bird feeder.

No, this is not a coffeepot anymore. It has
been modified so much that it is now a bird
feeder. The handle has been sawed off, the top
knob has been removed, the spout has been
sealed closed, the base has been sawed off, and
a flat piece of metal has been attached. A
stick has been attached and a window has been
cut in it, and it has been filled with bird
food. All of these modifications have changed
the object from a coffeepot to a bird feeder.
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In all cases, the system message supplied to GPT-4 was

You will be asked a series of questions that don’t have right or wrong answers. You are willing to use your
best judgment and commit to a concrete, specific response even in cases where you can’t be sure that you are
correct.

The user message included one of the exact questions shown in Table F.10 followed by Please explain your answer carefully. As
for all other experiments, GPT-3.5 was given a single prompt that included both the system and user messages just described.

The first two rows in the table consider arguments which involve a single category (Animal A) and multiple properties (e.g. ‘‘has scales’’, ‘‘can
fly’’ and ‘‘has wings’’ in row 1). They therefore differ from the arguments used in our experiments, all of which involved a single property and
multiple categories. In the most general case an argument may involve multiple categories and properties, and these arguments have also been
studied in the literature (Kemp, Shafto, & Tenenbaum, 2012). GPT-4 gives a fairly good response to the first question, but in row 2 it makes the
questionable claim that there are ‘‘many reptiles with scales and two legs that do not have wings’’.

Rows 3 and 4 consider two examples from the work of Collins and Michalski (1989) on plausible reasoning. Most people have never encountered
these questions previously, but can nevertheless construct a chain of reasoning that arrives at a plausible answer. In contrast, these questions are
presumably discussed explicitly in the corpora used when training GPT-3.5 and GPT-4, which makes them less than ideal as a test of reasoning in
LLMs.

Rows 5 through 8 consider examples from the literature on categorization. In some settings it may be useful to distinguish category labels (e.g.
‘‘is a wug’’) from properties (e.g. ‘‘is wuggish’’) but the problem of projecting a property from several items to a novel item seems deeply related
to the problem of projecting a category label. Ultimately, then, it seems best to consider these problems together.

Row 5 is a case that requires reasoners to go beyond similarity (the 3 inch object is more similar to a pizza than a quarter) to infer that the
object is likely to be a pizza. GPT-3.5 fails the test, but GPT-4 suggests that it may be an ‘‘oversized novelty quarter’’ and therefore identifies a
plausible way in which it could actually be considered a quarter.

Row 6 is inspired by an example in which a person who falls into a pool is classified as ‘‘intoxicated’’ even though falling into a pool is not
typically associated with the concept of intoxication. Both GPT-4 and GPT-3.5 give good responses by pointing out that alcohol may have been
involved.

Rows 7 and 8 consider questions from a classic line of work that explores how inferences about category membership can go beyond surface
appearances. In Row 7, GPT-4 gives an excellent response and argues that the creature is still a raccoon even though it looks identical to a skunk.
In Row 8, however, GPT-4 suggests that an analogous transformation applied to a coffeepot can indeed transform this object into a bird feeder. A
more extensive analysis of examples like these is provided by Zhang, She, Gerstenberg, and Rose (2023).

Although GPT-4 provides good responses to most of the questions in Table F.10, these questions are even more likely than those in Tables C.7
and Tables E.9 to have appeared in its training data in some form. Finding appropriate ways to test the underlying phenomena is therefore a major
challenge for future work on inductive reasoning in large language models.
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