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Abstract 

Recent work has shown that perceptual training can be used to improve the performance of novices in real-world 
visual classification tasks with medical images, but it is unclear which perceptual training methods are the most effec-
tive, especially for difficult medical image discrimination tasks. We investigated several different perceptual training 
methods with medically naïve participants in a difficult radiology task: identifying the degree of hepatic steatosis 
(fatty infiltration of the liver) in liver ultrasound images. In Experiment 1a (N = 90), participants completed four ses-
sions of standard perceptual training, and participants in Experiment 1b (N = 71) completed four sessions of com-
parison training. There was a significant post-training improvement for both types of training, although performance 
was better when the trained task aligned with the task participants were tested on. In both experiments, perfor-
mance initially improves rapidly, with learning becoming more gradual after the first training session. In Experiment 
2 (N = 200), we explored the hypothesis that performance could be improved by combining perceptual training with 
explicit annotated feedback presented in a stepwise fashion. Although participants improved in all training condi-
tions, performance was similar regardless of whether participants were given annotations, or underwent training in a 
stepwise fashion, both, or neither. Overall, we found that perceptual training can rapidly improve performance on a 
difficult radiology task, albeit not to a comparable level as expert performance, and that similar levels of performance 
were achieved across the perceptual training paradigms we compared.
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Introduction
With practice and experience, humans learn to extract 
the relevant perceptual features that guide decisions 
about stimuli in their environment, even when these fea-
tures are difficult to verbalise (Kellman & Garrigan, 2009). 

Training that aims to improve perceptual skills is referred 
to as perceptual training (Chen et al., 2017), whereas the 
term perceptual learning describes the improvement in 
task performance (e.g. the ability to identify, detect, and 
discriminate stimuli) that results from this training (Sagi, 
2011). Perceptual learning occurs across a wide range of 
simple visual tasks with basic stimuli (e.g. dots, line seg-
ments, and Gabor patches), such as motion direction 
detection (Ball & Sekuler, 1987), orientation discrimina-
tion (Fiorentini & Berardi, 1980), and texture discrimina-
tion (Karni & Sagi, 1991).

Perceptual training techniques have been increasingly 
applied to real-world visual tasks with complex stimuli. 
A growing body of work in the medical domain—for 
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example, in radiology (Chen et  al., 2017; Frank et  al., 
2020; Johnston et al., 2020; Sha et al., 2020; Sowden et al., 
2000), dermatology (Rimoin et al., 2015; Xu et al., 2016), 
histopathology (Krasne et  al., 2013), and cytopathology 
(Evered et  al., 2014)—has found that perceptual train-
ing can lead to rapid and substantial improvements in 
performance on visual tasks with medical images. These 
findings are particularly relevant because medical pro-
fessionals, such as radiologists, undergo many years of 
training to develop the expertise to interpret complex 
medical images. Traditionally, radiologists are trained 
to interpret and diagnose medical images in a primarily 
rule-based fashion, although this may not be the most 
efficient approach for learning complex visual tasks that 
require perceptual decisions (Johnston et al., 2020). The 
findings from the perceptual training literature suggest 
that perceptual training techniques could usefully sup-
plement the traditional training that radiologists receive. 
Perceptual training also offers the benefit of immediate 
feedback, which has been found to be essential for learn-
ing to interpret radiology images (Sha et  al., 2020), and 
is often delayed or absent in real-world medical image 
training.

However, the extent to which perceptual training is 
beneficial remains somewhat unclear: is it possible for 
participants to reach (or at least approach) expert-level 
performance when the tasks are highly complex? Whilst 
many studies have shown that perceptual training can 
lead to improvements in performance in visual tasks in 
the medical domain, relatively few studies have explored 
whether it is possible for participants to achieve similar 
levels of performance to experts, and if so, when. One 
exception is a study by Chen et  al. (2017), who com-
pared the performance of medically naïve participants 
that underwent perceptual training to identify proximal 
neck of femur fractures in X-ray images to that of experts 
(board-certified radiologists and radiology residents) 
across a series of experiments. The mean accuracy of the 
participants was approximately 90% after only two per-
ceptual training sessions, which was only slightly lower 
than the accuracy of experts (94%). Whilst pre-training 
accuracy was not assessed in this experiment, Chen et al. 
(2017) found that pre-training accuracy was only slightly 
above chance (55.9%) in two similar experiments. This 
finding suggests that perceptual training can be a practi-
cal and efficient way of obtaining medical image discrimi-
nation expertise.

Given its potential usefulness, it seems timely to ask if 
perceptual training techniques are effective for medical 
image discrimination tasks that require finer judgements 
(i.e. beyond a two-choice judgement). Additionally, with 
such tasks of increased difficulty, is there a particular 
perceptual training technique that is more effective? 

The most common and simple perceptual training tech-
nique is to present stimuli sequentially. On each training 
trial, participants make a judgement (e.g. “Is there a hip 
fracture present?”) about a single stimulus and are then 
informed if they were correct. Although similar tech-
niques are used in the categorisation literature (category 
learning and perceptual learning likely result from over-
lapping mechanisms; Carvalho & Goldstone, 2016), we 
refer to this as standard perceptual training as our review 
focuses on the perceptual training literature. However, 
recent successes with alternative training techniques—for 
example, training participants with comparison images 
(e.g. Sha et al., 2020) or supplementing standard percep-
tual training with annotated feedback (e.g. Chen et  al., 
2017; Frank et al., 2020; Johnston et al., 2020)—question 
whether the standard perceptual training technique is the 
most effective, especially for more challenging perceptual 
tasks than what have typically been studied (i.e. beyond 
two-choice tasks).

Our overarching aim is to assess which perceptual 
training methods are the most effective for training med-
ically naïve participants to improve their performance in 
a difficult real-world medical image discrimination task. 
To address this goal, we systematically tested different 
perceptual training procedures across a series of experi-
ments. In our studies, we chose to assess perceptual 
training with a task which experts and trainee radiolo-
gists find difficult: identifying the degree of hepatic stea-
tosis (fatty infiltration of the liver) on ultrasound images. 
Additionally, we sought to gain a better understanding 
of the limits of these perceptual training techniques in 
our task, by comparing the post-training performance of 
trained novices to an estimate of expert performance.

Experiment 1a
Traditionally, perceptual learning studies with simple 
stimuli and tasks have involved multiple sessions with 
thousands of trials (Dosher & Lu, 2017; Gauthier et  al., 
1998). However, studies with complex real-world images 
tend to involve substantially fewer sessions and tri-
als. This is often due to practical constraints such as the 
limited availability of suitable images (Chen et al., 2017) 
and time constraints related to recruiting and maintain-
ing participants. Despite a shorter amount of perceptual 
training, many of these studies have found significant 
performance improvements (e.g. Chen et al., 2017; John-
ston et al., 2020; Sha et al., 2020), suggesting that percep-
tual learning with complex medical image discrimination 
tasks can occur rapidly. For instance, the top five per-
formers in Chen et al.’s (2017) study could be trained up 
to a level approaching that of experts within an hour of 
training. These findings suggest that perceptual training 
can be efficient and effective, although the task employed 
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by Chen et  al. (2017) was very simple, requiring par-
ticipants only to learn to make a binary judgement. It is 
therefore unclear to what extent perceptual training can 
be used to assist participants in learning a more difficult 
visual image classification task, especially one requiring 
more than binary judgements.

If we can train naïve participants to perform a diffi-
cult visual discrimination task at a level comparable to 
experts in a short period of time with standard percep-
tual training, then there would be no need to investigate 
if there are more effective perceptual training paradigms. 
Thus, the aim of the current experiment was to assess the 
effectiveness of standard perceptual training on a diffi-
cult real-world visual image discrimination task—grad-
ing the severity of hepatic steatosis present in ultrasound 
images—to determine if there is a need to develop more 
effective perceptual training paradigms. We spaced the 
training over four sessions to allow participants the time 
and opportunity to learn this difficult task whilst balanc-
ing fatigue and time constraints. We allowed images to 
repeat during training to ensure that we had sufficient 
stimuli, as there is evidence that repeating images is not 
detrimental to learning (Chen et al., 2017; Johnston et al., 
2020; Sha et al., 2020).

Consistent with the literature, we hypothesised that 
standard perceptual training would lead to an improve-
ment in performance, as measured by a reduction in the 
mean difference in error post-training (relative to the 
pretest). However, due to the difficult nature of the task, 
which requires finer discrimination than the two-choice 
tasks used in previous studies, we expected that partici-
pants would be unable to reduce their mean error to a 
benchmark level of expert performance (which we esti-
mated from five experts that assisted with grading the 
stimuli). Finally, we hypothesised that learning would 
progress over the multiple sessions and that the average 
training performance (mean error) towards the end of 
each training session (the last 20 training trials) would 
improve over sessions.

Methods
Participants
Participants were recruited from Prolific. A pre-screen-
ing questionnaire was used to identify participants that 
had normal-or-corrected to normal vision, normal colour 
vision, no prior training or experience in radiology, and 
a willingness to participate in a multiple-session experi-
ment. We invited 100 eligible people to participate. As 
we expected our task would be more difficult and have 
a smaller effect size than the task studied by Chen et al. 
(2017), we recruited a substantially larger sample size (i.e. 
100 instead of 25).

Data for 10 participants were excluded for non-
completion of all sessions or for repeating or partially 
completing a session. The final sample consisted of 90 
participants (Mage = 38.8  years,  SDage = 13.7, 45 female). 
Participants were compensated a total of £11.05 for com-
pleting the four sessions. To motivate performance, a 
bonus of £1 was awarded to the top 25% of performers.

Additionally, five experts (three consultant radiologists, 
one radiology fellow, and one radiology registrar) rated 
the stimuli. These experts were a convenience sample. 
The experts did not participate in the experiments. From 
their ratings, we also obtained an estimate of expert per-
formance, which we used to compare the performance of 
our trained participants.

Materials
Abdominal ultrasounds of 505 unique livers were sourced 
from a tertiary care centre and reviewed as suitable for 
inclusion. Instead of using a single image of each liver, a 
collage image was constructed, as radiologists typically 
view several images when making decisions about these 
types of cases. Each collage contained four ultrasound 
views (two transverse and two longitudinal) that repre-
sented a liver (see Fig. 1 for an example).

As no objective measure is available to establish the 
severity of hepatic steatosis, the five experts indepen-
dently graded each collage on a 7-point scale, ranging 
from 1 (Normal) to 7 (Severe). The grading scale was 
expanded so that it was more fine-grained than what is 
commonly used in practice, to better determine improve-
ments in performance. For all 505 collages, the intraclass 
correlation coefficient estimate was 0.94, 95% CI [0.93, 
0.95], which was calculated based on a mean-rating 
(k = 5), absolute-agreement, two-way random-effects 
model, and suggested excellent reliability (Ku & Li, 2016). 
For each collage, a gold standard consensus grade was 
determined from the average rating of the five experts. 
As we sought to select stimuli that were rated the most 
consistently by experts, collages where one or more 
expert’s rating deviated more than one grade from this 
consensus grade were excluded. The final pool of stimuli 
contained 386 collages. The stimuli were not equally dis-
tributed across the grades, with the majority depicting 
livers that were on the lower end (grades 1–3) of the scale 
(16%, 40%, and 11%, respectively) rather than the higher 
end (grades 4–7; 6%, 11%, 10%, and 6%, respectively). 
However, this is consistent with more severe cases occur-
ring less frequently in practice, resulting in less suitable 
images of higher severity being available.

The collages were randomly split into a training (286 
collages) or test set (50 collages for pretest and 50 collages 
for post-test), with the condition that the distribution of 
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grades was balanced across each set. The collages were 
750 pixels (width) by 562.5 pixels (height).

Design and procedure
The experiment was developed using jsPsych (de Leeuw, 
2015) to allow for the experiment to be completed online. 
All participants completed the experiment on a desktop 
or laptop computer with a minimum browser window 
size of 1024 × 700 pixels.

There were four self-paced training sessions, with a 
pretest at the beginning of the first session and a post-
test at the end of the final session. Participants had a 
48-h window to complete each session, with a 24-h break 
between when the window for a session closed and the 
window for the next session opened. Therefore, depend-
ing on when in the 48-h window the sessions were com-
pleted, there was a break of at least 24 h and up to 120 h 
between sessions.

At the start of the experiment, it was explained that the 
task was to grade the degree of fatty liver tissue in liver 
ultrasound images, using the 7-point scale. The descrip-
tion of the task was simplified into plain language to 
avoid technical terms that novices may have difficulty 
grasping. An annotated image was shown (Fig.  2) to 
provide basic instruction about the type of features that 

differ as the fattiness increases. In addition, four individ-
ual images of livers that represented grades 1, 3, 5, and 
7 were shown. This rudimentary rule-based instruction 
was included because it is similar to the type of instruc-
tion that radiology trainees would initially receive.

Participants then completed the pretest where they 
graded 50 collages, with no limits on the time taken to 
view the stimuli or feedback. The collages were presented 
sequentially in a randomised order. Responses were made 
via the keyboard, and a prompt was displayed under-
neath each collage to remind participants of the response 
options. No feedback was provided during this phase.

Participants then underwent four sessions of percep-
tual training, which was also self-paced. There were 100 
training trials per session (400 in total). The collages pre-
sented during the training phase were randomly sam-
pled with replacement from the training set. To motivate 
participants, points were awarded during the training 
phase, and these points contributed towards earning 
the performance bonus. Points were awarded depend-
ing on the distance from the correct answer, with a 
higher number of points awarded for correct responses 
than near-correct responses. In the training phase, after 
grading a collage, the correct grade was immediately pre-
sented underneath the collage with a feedback message 

Fig. 1 Example stimulus in Experiment 1a: collage of a liver. Note The collage contains two transverse and two longitudinal ultrasound views of the 
liver. In this example, the degree of hepatic steatosis is 2 (Normal-mild)
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that differed depending on how near the response was to 
the correct answer (i.e. “Spot on! Correct’’ in green text 
for correct responses, “Almost” in blue text when one 
grade off the correct answer, “Not quite” in orange text 
for two grades from the correct answer, or “Incorrect” in 
red for responses more than two grades from the correct 
answer).

To encourage careful responding, ten attention check 
trials were included over the four sessions. On these tri-
als, the words “attention check” were overlaid in grey text 
on each image in the collage and the prompt below the 
stimulus instructed participants on how to respond (e.g. 
“Please respond 1: Normal”). If an incorrect response was 
made, participants were reminded that it was important 
to pay attention to the task. Participants who failed more 
than one attention check on average per session (i.e. more 
than four out of the ten attention checks over the four 
sessions) were excluded from the subsequent analyses.

Results
Due to a technical error, 1–10 trials of data were miss-
ing for five participants, so analyses were conducted on 
their remaining data. No participants failed the attention 
check criteria. The average total completion time for all 
sessions was 62 min.

As shown in Additional file 1: Fig. S1, performance on 
the post-test improved, with more responses closer to 
the consensus answer (e.g. distances 0 or 1) and fewer 
responses that were further (e.g. distances 5 or 6). To bet-
ter quantify the overall improvement in performance, we 

computed the mean error for each participant on each 
test, which is shown in Fig. 3. The mean error represents 
the distance from the consensus answer, with a lower 
value indicating better performance. A paired-samples 
t test revealed that the mean error on the post-test was 
significantly lower than the pretest, t(89) = 13.68, p < .001, 
95% CI [0.59, 0.79], d = 1.44.

To provide a reference point of expert performance, 
we first approximated the performance of our group 
of experts for the same collages that participants were 
tested on. However, we used a slightly different refer-
ence point to assess their performance, to avoid “double-
dipping” the data. For each collage, each expert’s rating 
was assessed relative to the mean rating of the other 
four experts (i.e. for each expert we constructed a con-
sensus rating using the ratings of the other four experts) 
and then calculated the overall mean error for the group 
of experts (shown in the blue dotted line in Fig.  3). As 
this used the same data that was used to select the reli-
ably rated collages for use in the experiment, we also 
estimated the performance of the experts by repeat-
ing this procedure but for all 505 collages (shown in the 
black dotted line in Fig. 3). Using the results of this sec-
ond more rigorous estimate of expert performance, a 
Welch independent samples t test found that the trained 
participants had significantly higher mean error than 
the experts, t(9.10) = 8.82, p < .001, 95% CI [0.33, 0.56], 
d = 2.14.

Figure  4 shows the average training performance 
over the course of each training session. A linear model 

Fig. 2 The annotated image shown in the instructions at the start of Experiments 1a and 1b
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with trial number as the predictor found that the aver-
age mean error decreased significantly over the first ses-
sion, F(1, 98) = 22.77, p < .001. However, this trend did 
not continue over the second session, F(1, 98) = 3.28, 
p = .073, third session, F(1, 98) = 0.48, p = .491, or fourth 
session, F(1, 98) = 0.31, p = .566. As we did not conduct 

a post-test following each training session, we approxi-
mated the learning that occurred in each session by cal-
culating the mean error for the final 20 training trials, 
which is given in Table  1. A one-way ANOVA found 
there was a significant difference in the mean error in 
the final 20 trials of the four sessions, F(3, 267) = 17. 45, 
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p < .001, η2
G = .08. Post hoc t tests with a Bonferroni cor-

rection revealed that the second, third, and fourth train-
ing sessions all had significantly lower mean error than 
the first training session (p < .001). All other comparisons 
were non-significant.

Discussion
Consistent with our expectations and prior work, we 
found that perceptual training improved performance on 
our difficult visual discrimination task. However, unlike 
Chen et al. (2017), and as expected, standard perceptual 
training was not sufficient to train people to the level of 
expert performance.

When evaluating training performance, we found that 
meaningful improvements in performance occurred 
within the first training session, after which learning 
appeared to gradually plateau. There were no significant 
improvements in training performance for the later ses-
sions. These findings are not entirely consistent with Sha 
et al. (2020) where there were significant improvements 
in learning between sessions, or with the substantial 
improvement over the entire training found by Johnston 
et al. (2020). Whilst some minor differences in methodol-
ogy could account for this discrepancy (e.g. the number 
of images and sessions), it is plausible that our increased 
task difficulty limited the amount of learning that could 
occur with this simple perceptual training method.

Experiment 1b
Is there a more effective training regime than the stand-
ard perceptual training approach? One alternative per-
ceptual training method, which we refer to as comparison 
training, involves presenting several stimuli simultane-
ously, with the purpose of facilitating comparison. Whilst 
there are variations that involve passive learning (e.g. pre-
senting stimuli with their category labels for study), we 
are interested in active learning where participants make 

judgements and receive feedback, as this kind of testing 
can enhance learning (Roediger & Karpicke, 2006). In 
active comparison training, the stimuli presented on each 
trial generally depict different categories (e.g. a normal 
and severe case) and participants need to discriminate 
between the stimuli (e.g. “Which image is Normal?”), and 
then receive immediate feedback. Whilst only a few per-
ceptual training studies with real-world images have used 
comparison training (e.g. Evered et  al., 2014; Searston 
& Tangen, 2017; Sha et al., 2020), similar techniques are 
successfully used in the categorisation literature (Kang & 
Pashler, 2012; Meagher et al., 2017). Additionally, there is 
some evidence that simultaneous exposure is more effec-
tive for perceptual learning than sequential exposure, 
in tasks with stimuli such as faces (Mundy et  al., 2007) 
and simpler checkerboard stimuli (Mundy et  al., 2009). 
Therefore, a perceptual training regime that involves an 
active comparison between simultaneously presented 
stimuli offers a promising way to enhance learning.

It is theorised that simultaneously presenting stimuli 
enhances discriminative contrast by highlighting com-
monalities and differences and can improve discrimina-
tion ability (Hammer et al., 2008; Kang & Pashler, 2012). 
This is particularly relevant when discriminating between 
highly similar categories (Carvalho & Goldstone, 2014). 
For our stimuli, those which are closer in grades (e.g. 
Normal vs Normal-mild) are likely to be more confusable 
than grades that are further apart. Therefore, the process 
of comparing these highly similar stimuli is expected to 
facilitate learning.

The aim of the current experiment is to assess if using 
a training approach that facilitates comparison between 
stimuli is effective for training medically naïve partici-
pants to grade the severity of hepatic steatosis present 
in ultrasound images. We hypothesised that compari-
son training will improve post-training performance, as 
measured by a reduction in mean error. Similar to Exper-
iment 1a, we did not expect that participants would be 
able to reach the levels of expert performance. Although 
we did not find substantial benefits for multiple sessions 
in Experiment 1a, it is possible that comparison training 
could show a benefit, especially if it has the potential to 
teach the participant more. We therefore chose to test 
comparison training across four sessions, again expect-
ing that average training performance towards the end 
of each training session (the last 20 training trials) would 
improve over sessions.

Methods
Participants
The eligibility requirements to participate were the same 
as in Experiment 1a. However, the pre-screening ques-
tionnaire missed assessing the technical requirements of 

Table 1 Mean error (Experiment 1a) and mean difficulty level of 
the comparison (Experiment 1b) for the last 20 training trials of 
each training session

As Experiment 1a involved standard perceptual training, mean error was used 
as the measure. However, as Experiment 1b involved comparison training of an 
adaptive nature, the measure is the mean difficulty level of the comparison

Session Error (1a) Difficulty level of 
comparison (1b)

M SD M SD

Session 1 1.36 0.39 5.00 0.58

Session 2 1.16 0.36 5.09 0.53

Session 3 1.11 0.36 5.07 0.74

Session 4 1.07 0.34 5.13 0.60
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devices, so only 86 of the 100 that were invited were able 
to participate. Data for 15 participants were excluded for 
non-completion of all sessions or for repeating or par-
tially completing a session. Thus, the final sample con-
sisted of 71 participants (Mage = 35.5 years, SDage = 10.8, 
44 female). Participants were compensated £11.05 for 
completing the four sessions, with a £1 performance 
bonus awarded to the top 25%.

Materials
The stimuli were the same as in Experiment 1a. However, 
as the comparison task involved presented two different 
cases on each training trial, participants were presented 
with half of each collage (split vertically).

Design and procedure
Experiment 1b was identical to Experiment 1a except 
for the training task. Instead of viewing a collage of the 
same liver on each training trial, participants were simul-
taneously presented with two side-by-side collages. 
Each collage contained two images of the same liver, and 

each depicted a different grade of fatty liver disease (see 
Fig. 5). The decision that each collage would contain only 
two images was made so that on each trial, a total of four 
images of livers would be presented, to be consistent with 
Experiment 1a.

The training task differed from Experiment 1a in 
two other key aspects. Firstly, participants were asked 
to compare the two different livers and discriminate 
between them. At the start of each trial, participants 
were informed of the grade they needed to identify, along 
with the grade of the other liver (e.g. “Which image is 
1: Normal? The other image is 7: Severe”). Participants 
responded according to which panel of images they 
believed depicted the relevant grade. Corrective feedback 
was immediately provided. We included ten attention 
check trials in total, similar to Experiment 1a, except the 
format was consistent with the comparison display and 
task.

Secondly, the training was of an adaptive nature, with 
the difficulty of the comparisons changing as participants 
progressed throughout the session. This was to balance 

Fig. 5 Example of a comparison training trial in Experiment 1b. Note The left panel contains half of a collage of a liver that is a grade 5 (Moderate) 
and the right panel contains half of a collage of a liver that is a grade 3 (Mild). In this example, participants were asked which panel of images were 3 
(Mild) and made their response by pressing the F (left panel) or J (right panel) key. This is an example of the second most difficult comparison (level 
5), where livers that are two grades apart are compared
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performance and motivation. We measured the difficulty of 
the comparison as the distance between the grades of the 
livers being compared (e.g. cases that were six grades apart 
were the easiest and cases that were one grade apart were the 
most difficult). The training began with easier comparisons 
and followed a modified 2-up 1-down adaptive staircase pro-
cedure. After two consecutive correct responses, the diffi-
culty of the next comparison was increased (e.g. the distance 
between grades decreased by one). An incorrect response 
stepped participants down to the previous level of difficulty 
(i.e. an easier comparison). Points were only awarded for cor-
rect responses, but such that higher difficulty comparisons 
earned more points (e.g. 1 point for the easiest comparison 
and 5 points for the most difficult comparison).

Results
Due to a technical error, two participants were missing 
data at random for up to five trials; analyses were con-
ducted on their remaining data. No exclusions were 
required for failing attention checks. Participation took 
an average of 86 min for the four sessions.

As shown in Fig.  3, performance on the post-test 
improved, with more responses closer to the consensus 
answer (e.g. distances 0 or 1) and fewer responses that 
were further. Again, we computed the average mean error 
for each test, which is shown in Fig. 3. A paired sample 
t test revealed that the mean error on the post-test was 
significantly lower than the pretest, t(70) = 6.45, p < .001, 
95% CI [0.23, 0.43], d = 0.77.

We compared the mean error on the post-test of the 
trained participants to the same estimate of expert per-
formance that was calculated in Experiment 1a (the 
more rigorous method where experts were assessed on 
the initial 505 collages). A Welch independent samples t 
test found that the trained participants had significantly 
higher mean error than the experts, t(13.38) = 13.60, 
p < .001, 95% CI [0.64, 0.88], d = 3.22.

Due to the adaptive nature of the training in Experi-
ment 1b, we examined how the difficulty level of the 
comparisons progressed over the course of each train-
ing session, instead of accuracy (because accuracy is 
likely impacted by the difficulty of the comparison). As 
shown in Fig.  6, there is a rapid increase in the diffi-
culty of the comparisons at the start of each session, 
as participants progress through the staircase proce-
dure. A difficulty level of approximately five (i.e. dis-
criminating between livers that are two grades apart) 
tended to be reached within the first quarter of a train-
ing session, after which performance plateaued. The 
same pattern occurred across each session. Table  1 
displays the mean difficulty level of the comparisons 
for the last 20 training trials of each session. A one-
way repeated measures ANOVA found no significant 
difference in the mean difficulty level of the compari-
sons for the final 20 trials between the four sessions, 
F(2.70, 189.34) = 0.93, p = .421, η2

G = .006, suggesting 
that the gradual improvement across sessions was not 
substantial.
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Fig. 6 Average training performance across the Experiment 1b (comparison training) sessions. Note The difficulty level is represented from 1 
(easiest) to 6 (hardest). The difficulty level is equivalent to the maximum grade of seven minus the distance between the grades being compared
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Discussion
We found that perceptual learning occurs when simulta-
neously presenting stimuli, consistent with previous work 
(Searston & Tangen, 2017; Sha et  al., 2020). Similar to 
Experiment 1a, performance on the post-test improved, 
although did not reach the level of experts. However, we 
did not find a significant improvement in performance 
between the training sessions. A possible explanation for 
this unexpected finding is that after initial rapid progres-
sion, performance tended to fluctuate close to the ceiling 
for the remainder of a training session (as observed in 
Fig. 6), limiting the extent for improvement.

The improvement in performance on the post-test was 
significantly smaller than in Experiment 1a (see Addi-
tional file  1), despite the theorised benefits that com-
parison offers and although participants saw more livers 
overall (unique and repeated) during comparison train-
ing. One possibility for this discrepancy is that transfer 
of learning was limited because the training task differed 
from the task that participants were tested on. This is 
consistent with previous work which found that train-
ing on a particular task does not improve performance 
on an alternative task, even when the tasks involve the 
same stimuli (Ahissar & Hochstein, 1993). Whilst liv-
ers that depicted each of the different grades were pre-
sented during our comparison training, participants were 
not explicitly trained to grade the livers according to the 
7-point grading scale.

Performance during the comparison training shows 
that participants were able to discriminate between 
two highly similar stimuli with a high degree of accu-
racy. Whilst simultaneously presenting stimuli may 
have facilitated comparison and improved performance 
on the training task, participants may have focussed on 
looking for similarities and differences between stimuli, 
rather than learning the specific perceptual features that 
related to each grade of hepatic steatosis. Subsequently, 
this could have impacted their ability to grade the stimuli 
according to the 7-point scale in the test.

Additionally, due to the nature of the comparison train-
ing, the distribution of livers encountered during training 
would not align precisely with the distribution of grades 
in the test set. Whereas, in Experiment 1a, the training 
and test set distributions were aligned, which may have 
facilitated learning of the underlying distribution (i.e. 
prevalence of each grade).

Finally, only presenting half of each collage during the 
comparison training limited the visual information (i.e. 
fewer images) that was available for each liver. Whilst 
this methodological choice was made to keep the total 
number of images presented for each liver on each train-
ing trial consistent with Experiment 1a, the reduction in 
visual information present for each liver may have made 

it more difficult to make an accurate discrimination 
decision.

Experiment 2
Is it possible to improve perceptual learning further than 
we were able to in Experiments 1a and 1b? Recent work 
has found that supplementing perceptual training with 
annotated feedback (e.g. an arrow) that identifies the 
location of a target (e.g. a lesion in a mammogram), can 
improve learning, generalisation, (Johnston et al., 2020), 
and retention of learning (Frank et al., 2020). Annotations 
are helpful for training people to identify the location of 
targets (i.e. not just identifying if a target is present or 
not), particularly for targets that consist of more visually 
complex structures.

The provision of annotated feedback could even 
account for the substantial improvement in performance 
found by Chen et  al. (2017), as the feedback contained 
arrows that identified the location of the target (hip frac-
ture) during training. Consistent with this possibility, 
Johnston et  al. (2020) found that although experts sub-
stantially outperformed trained novices on a more diffi-
cult task, one involving identifying whether appendicitis 
was present in a single axial slice in computed tomogra-
phy (CT) images of abdomens, the performance gap was 
larger when only corrective textual feedback was pro-
vided, as opposed to more detailed annotated feedback. 
However, these studies have only demonstrated the effec-
tiveness of annotations in tasks that involve judging the 
presence or absence of a target (i.e. a binary decision).

A similar but more explicit and detailed approach that 
has been used in the categorisation literature is feature 
highlighting, where feature descriptions are provided 
with the purpose of focussing attention on relevant fea-
tures and dimensions (Meagher et  al., 2021; Miyatsu 
et al., 2019). However, feature highlighting has only been 
found to be effective when the descriptions are linked to 
the corresponding parts of the stimulus (e.g. by circling 
the location; Miyatsu et  al., 2019). Therefore, a training 
paradigm that combines annotations and descriptions of 
the features being identified could be particularly prom-
ising for enhancing learning, particularly for our stimuli, 
which require attention to multiple features.

Finally, a common approach that has been used in the 
education literature to facilitate the learning of complex 
tasks is to break the task down into a sequence of sim-
pler steps (van Merriënboer et al., 2003). In the medical 
domain more specifically, sometimes a diagnosis may be 
reached by breaking a complex visual task down into sep-
arate categorisation decisions (Hughes & Thomas, 2021).

Therefore, the aim of the current experiment is to test 
two modifications to the standard perceptual training 
technique: (1) supplementing perceptual training with 
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annotated feedback, and (2) breaking the training task 
into steps (i.e. incrementally increasing the difficulty of 
the task throughout the training). We used a 2 (Annota-
tions vs No Annotations) × 2 (Steps vs No Steps) design 
to compare the effect of each training modification, with 
the No Annotations and No Steps condition serving as 
a control condition (i.e. standard perceptual training). 
We hypothesised that either supplementing the training 
with annotated feedback or modifying the training into 
steps will lead to more improvement on the post-test 
than standard perceptual training (i.e. No Annotations 
and No Steps condition). Additionally, we hypothesised 
that annotated feedback would improve performance 
more than stepped training, but that training with both 
modifications (Annotations and Steps condition) would 
be the most effective. We did not have a reason to expect 
an interaction between the Annotations and Steps 
conditions.

Whilst multiple training sessions may have contributed 
to improved performance in Experiment 1a, we believe 
that one training session is reasonable for initially testing 
our modified training approach, as we previously found 
that the majority of the learning occurred in the first ses-
sion. We acknowledge there may be a smaller effect of 
standard perceptual training (i.e. No Annotations and No 
Steps condition) with one session. However, as the train-
ing modifications in the current experiment are expected 
to improve performance (i.e. a larger training effect) 
compared to standard perceptual training, one session 
provides an opportunity to observe the potential ben-
efits to performance. If our modified training approach 
showed benefits beyond standard perceptual training, we 
could subsequently investigate whether multiple training 
sessions are beneficial.

Methods
Participants
We recruited 220 participants from Amazon Mechani-
cal Turk. As we found a large effect in Experiment 1a and 
because the current experiment only involved one ses-
sion, so the dropout rate would likely be less, the sample 
size was smaller (per condition) than in Experiments 1a 
and 1b. All participants reported no previous experience 
in radiology or with ultrasound images, normal colour 
vision and normal-or-corrected-to-normal visual acuity. 
Participants were compensated $10 (USD) for complet-
ing the experiment. A bonus payment of $1 was awarded 
to the top 20% of participants. This experiment was pre-
registered at AsPredicted: https:// aspre dicted. org/ TK7_ 
3PN. Data for 20 participants were excluded according to 
the pre-registered exclusion criteria (six for failing more 
than one attention check, one for missing data, eight for 
technical issues, and five for repeating the experiment). 

Our final sample (N = 200) included 72 females, 127 
males, and 1 non-binary participant, with a mean age of 
39.0 (SD = 10.5). All participants resided in the US.

Materials
The stimuli for the pretest and post-test were the same 
liver collages that were used in the respective tests 
in Experiment 1a and 1b. For the training stimuli, we 
selected a subset of 90 collages from the training set in 
Experiment 1a, with the stimuli selected such that the 
distribution of grades depicted was consistent with those 
in the test sets (i.e. the proportion of collages depicting 
each grade on the 7-point scale).

In consultation with the experts, it was determined 
that the training collages (in the Annotations conditions) 
would be annotated according to three key features: (a) 
the brightness of the background liver tissue, (b) the 
brightness of the white lines around the blood vessels, 
and (c) the difference in brightness between the lower 
and upper liver tissue (see Table  2 for further informa-
tion). The annotations consisted of brief descriptions of 
the features in non-technical terms, along with arrows 
and circles that identified examples that were relevant for 
assessing each feature (see Fig. 7 for an example).

Design and procedure
Participants were randomly assigned to one of four 
training conditions in a 2 (Annotations vs No Annota-
tions) × 2 (Steps vs No Steps) design. This determined 
whether the feedback collages during training were anno-
tated (Annotations conditions) or not (No Annotations 
conditions; feedback was the same as in Experiment 1a) 
and whether participants were trained on each feature in 
a sequential fashion (Steps conditions) or not (No Steps 
conditions). Therefore, the No Steps and No Annotations 
condition was the same format as Experiment 1a and 
represents standard perceptual training and can be used 
as a point of comparison for the other three conditions.

The experiment was self-paced and completed online 
in one session. Table 3 shows the number of participants 
per condition and the average completion time.

As in Experiments 1a and 1b, participants were pro-
vided with instructions about the task and four example 
images of livers that depicted grades 1, 3, 5, and 7. Three 
multiple-choice questions were used to check if partici-
pants understood the task and to reduce potential data 
quality issues. The instructions were repeated if partici-
pants answered incorrectly. Following this, participants 
completed the pretest, then underwent training, and then 
were assessed in the post-test (the tests were the same 
as in Experiments 1a and 1b). Four attention check tri-
als were included throughout the experiment to monitor 
data quality.

https://aspredicted.org/TK7_3PN
https://aspredicted.org/TK7_3PN
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The training was split into three blocks of 30 trials, with 
unique collages presented in the three blocks. Within 
each training block the stimuli were presented in a ran-
domised order. The same stimuli were presented in the 
corresponding training block across conditions (e.g. 

participants were presented with the same stimuli in the 
first block, regardless of their assigned condition).

In the No Steps and No Annotations condition, the 
training task was the same as in Experiment 1a (i.e. 
grading each collage on the 7-point scale without any 

Table 2 The verbal descriptions used in the annotations conditions in Experiment 2

The first feature relates to the brightness of the background tissue, the second feature relates to the lines around vessels, and the third feature relates to the gradient 
between the lower and upper tissue. The same feature description could apply to more than one grade, as indicated by the letters a, b, c, and d. For example, the 
second description for the first feature (a) applied to grade two and above. In the two Steps conditions, the three features were learned incrementally over each 
training block (i.e. the first feature in the first training block and so on)

Grade Feature 1 Feature 2 Feature 3

1 The liver tissue in the background 
(i.e. not directly adjacent to vessels) 
is not particularly bright

Blood vessels have bright white lines adjacent to 
their  wallsb

The brightness of the lower tissue is similar to the 
upper  tissued

2 The liver tissue in the background 
(i.e. not directly adjacent to vessels) 
is brighter than normal (grade 1)a

b d

3 a Blood vessels have white lines adjacent to their 
walls, but these are generally less bright than in 
grade 2

d

4 a Some blood vessels do not have white lines adja-
cent to their walls. Some vessels do have white lines 
adjacent to their walls

d

5 a Most blood vessels do not have white lines adjacent 
to their  wallsc

d

6 a c The lower tissue is slightly darker than the upper 
tissue

7 a Almost none of the blood vessels have white lines 
adjacent to their walls

The lower tissue is clearly darker than the upper 
tissue

Fig. 7 Example of annotated feedback provided in the Annotations conditions in Experiment 2. Note The format of the annotations was the same 
for the Annotations conditions, except that the number of annotated features displayed in the Annotations and steps condition depended on 
the training block (i.e. the first block only contained annotations relating to one feature, the second block contained annotations relating to two 
features, and the third training block contained all three features as shown in this example)
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annotations). However, in the two Steps conditions, 
participants were instructed to use a particular feature 
(or features) to make their judgement in each training 
block. A brief multiple-choice understanding check was 
used to assess if participants understood the instruc-
tions in each block (i.e. the feature/s and task) and the 
instructions were summarised if participants answered 
incorrectly. In the first training block, participants were 
instructed to consider the first feature (i.e. the brightness 
of the background liver tissue). As this feature alone is 
generally only helpful for distinguishing a grade 1 (Nor-
mal) from higher severity grades, the task was simpli-
fied; participants graded each collage as either a grade 
1 or more than a grade 1. In the second training block, 
participants were instructed to additionally use the sec-
ond feature (i.e. the brightness of the white lines around 
the blood vessels). Together, both features are generally 
useful for distinguishing between grades 1 and 4, but not 
between grades that are higher than 4. Accordingly, task 
difficulty increased, and participants graded each collage 
as either a grade 1, 2, 3, 4, or more than 4. Finally, in the 
third training block, participants were informed of the 
third feature (i.e. the difference in brightness between the 
lower and upper liver tissue) and instructed to consider 
all three features when grading the stimuli. Therefore, 
the task in the third (and final) training block required 
participants to grade each collage using the full 7-point 
grading scale (i.e. the same task they were tested on).

In the Annotations and Steps condition, participants 
were only presented with annotated feedback that related 
to the feature (or features) they had learned about up 
to that current block (e.g. only one feature in the first 
block). However, in the Annotations and No Steps condi-
tion, participants were presented with annotated feed-
back that related to all three features.

Results
Additional file  1: Fig. S2 shows the distribution of 
responses on the pretest and post-test for each condition. 
The trend is similar across conditions and with Experi-
ment 1a and 1b. Before proceeding with our main analy-
sis, we collapsed our data across all conditions to assess 

if there was an overall training effect. A paired-samples 
t test found that the reduction in mean error from pre-
test to post-test was significant, t(199) = − 9.80, p < .001, 
95% CI [− 0.39, − 0.26], d = 0.69. Therefore, we pro-
ceeded with our main analysis, to compare the training 
conditions. We conducted a 2 (Annotations) × 2 (Steps) 
between-participants ANOVA, with the mean differ-
ence in error between the pretest and the post-test as the 
dependent measure. Figure  8 shows that this difference 
was similar across conditions. Contrary to our expec-
tations, there was no significant main effect of Annota-
tions, F(1, 196) = 0.56, p = .454, or Steps, F(1, 196) = 0.06, 
p = .809. Additionally, there was no significant interac-
tion between Annotations and Steps, F(1, 196) = 0.21, 
p = .648.

Whilst we had not pre-registered this analysis, we com-
pared the mean error on the post-test (collapsed across 
all four training conditions since we found no signifi-
cant difference in performance) to the estimate of expert 
performance on the original 505 collages. An independ-
ent samples Welch t test found that the trained partici-
pants had a significantly higher mean error (M = 1.45, 
SD = 0.41) than the experts (M = 0.75, SD = 0.09), 
t(8.99) = 13.88, p < .001, 95% CI [0.58, 0.81], d = 2.34.

Discussion
In contrast to our expectations, providing detailed anno-
tated feedback did not aid learning. Whilst this finding 
is inconsistent with previous work (Frank et  al., 2020; 
Johnston et  al., 2020; Miyatsu et  al., 2019), differences 
in the nature of the task and our stimuli could account 
for this. For example, in Frank et al. (2020), participants 
only needed to search for a single target (e.g. a lesion or 
grouped microcalcification in a mammogram image), 
and in Johnston et  al. (2020), participants only needed 
to attend to a specific location (e.g. identifying the loca-
tion of the appendix and deciding if it appeared normal), 
so there was likely a clear benefit to drawing attention to 
the location of the target or appendix. Conversely, in our 
study, participants needed to attend to various locations 
and multiple cues to make their judgement. Additionally, 
our annotations may have not been as helpful because 
the relevant features varied along a continuum (e.g. the 
brightness of the lines around blood vessels) as opposed 
to features that are clearly either present or absent. Relat-
edly, the effectiveness of feature highlighting can depend 
on how diagnostic the features are for distinguishing 
between confusable categories (Meagher et  al., 2021). It 
could be that the features that we focussed on did not 
have sufficiently high diagnostic power.

Contrary to our expectations, breaking the training 
into discrete steps also did not improve performance. 
Focussing on learning the features in a sequential fashion 

Table 3 Number of participants and mean completion time for 
the conditions in Experiment 2

Condition N Mean 
completion 
time (min)

Annotations and steps 49 32

Annotations and no steps 50 28

Steps and no annotations 53 29

No steps and no annotations 48 25



Page 14 of 18Marris et al. Cognitive Research: Principles and Implications            (2023) 8:19 

may not be helpful if the features do not have sufficient 
independent diagnostic power. For instance, some cat-
egories are extremely difficult to master with explicit 
verbal instruction, particularly if multiple features need 
to be considered in a holistic fashion to make an accu-
rate judgement (Hughes & Thomas, 2021). If the three 
features that we trained participants on are only useful 
when considered together, then attempting to learn them 
sequentially would be ineffective.

General discussion
Our work makes several contributions to the grow-
ing literature on perceptual training. In Experiment 1a, 
we investigated to what extent we could use perceptual 
training to improve performance on a complex, real-
world visual discrimination task. We used a very simple 
training regime: participants were shown collages of liver 
ultrasound images and graded the severity of the hepatic 
steatosis for each, then received immediate feedback as 
to the actual severity, as determined by the collective 
judgement of a group of experts. We demonstrated that 
this simple perceptual training method led to a signifi-
cant improvement in performance, although participants 
were unable to improve to the level of experts.

In Experiment 1b, we replicated these findings using a 
different training regime, which facilitated comparison 
between different grades of stimuli. Participants were 
simultaneously presented with two half-collages that 
each represented a different liver. They were told the 
grade of the hepatic steatosis for both livers but were not 

told which grade applied to each liver. Participants judged 
which grade applied to each liver and received immedi-
ate feedback. After two consecutively correct responses, 
the comparison task was made more difficult by reduc-
ing the difference between the grades of hepatic steatosis 
in the two half-collages. Conversely, following an incor-
rect response, the task was made easier. In this way, par-
ticipants were always presented with judgements near 
the limit of their ability. Performance improved rapidly 
within a training session but did not significantly improve 
across subsequent training sessions (perhaps due to the 
high level of performance that was attained early on). 
Perhaps longer training sessions for both Experiment 
1a and 1b would have resulted in improved learning 
between each session and across the entire course of the 
training.

Following our inability to improve the performance 
of participants in Experiments 1a and 1b to the level of 
experts, we changed our approach for Experiment 2. 
Previously, the expert radiologists had indicated that 
there were three features that they particularly focussed 
on. When presented with the results from our first two 
experiments, these radiologists suggested training par-
ticipants on these features in a sequential fashion. Addi-
tionally, a subsequent literature search suggested that 
explicitly annotating the features might increase learning. 
Therefore, we investigated both factors using a crossed 
2 × 2 design. Despite less training than in Experiments 
1a and 1b, participants were able to improve their perfor-
mance on the post-test. However, to our surprise, neither 
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the stepwise training nor the annotations significantly 
enhanced performance beyond standard perceptual 
training, even when combined. These results reinforce 
our findings from Experiments 1a and 1b; although per-
ceptual training can rapidly improve the performance 
of participants on this task, participants were unable to 
reach similar levels of performance as the experts.

It is possible that the methods we used to estimate 
expert performance are biased and do not reflect their 
true performance on this task. Our first method esti-
mated the experts’ performance from the 100 test col-
lages and was likely an overestimate, as only the reliably 
rated collages had been selected for use in the experi-
ment. However, our second method, where performance 
was estimated from all 505 collages, is arguably more 
rigorous and potentially even biased against experts, as 
it evaluated performance on a set of collages that were 
likely harder to classify. An unbiased measure of expert 
performance likely lies somewhere between our two esti-
mates. Regardless, participants were not able to achieve 
the level of performance of experts even when the second 
method was used to estimate expert performance.

Another consideration is the practical usefulness of the 
training, despite participants not reaching expert perfor-
mance as measured in our studies. As the grading scale 
used in our experiments was more fine-grained than what 
is commonly used in practice, the level of skill achieved 
by the training could still be considered useful in a prac-
tical sense. Therefore, we collapsed the 7-point grading 
scale to a less fine-grained grading scale (4-point scale) 
that is more commonly used in practice and repeated our 
analysis (reported in the Additional file 1). However, even 
when using the less fine-grained grading scale, partici-
pants did not achieve the level of performance of experts.

The level of identification skill that participants were 
able to achieve in our training compared to prior work 
may have been impacted by differences in the task. For 
instance, the tasks that Chen et  al. (2017) and Johnston 
et  al. (2020) studied only required a two-choice identi-
fication of a single image (e.g. fracture or no fracture), 
where chance performance was 50%. In contrast, our 
task was more difficult as it involved a more fine-tuned 
discrimination that required participants to attend to 
multiple features and locations across several views of a 
liver (i.e. the collage) to make their decision. It is possible 
that a short amount of perceptual training can be effec-
tive at training novices to the level of experts for two-
choice identification tasks that involve the clear presence 
or absence of certain features, but not for more fine-
grained tasks that require sensitivity to multiple features, 
even when annotated feedback is provided. Although 
the novices in Johnston et al.’s (2020) study did not reach 
expert performance, this could be because they were 

only trained to make each diagnosis based on a single CT 
image (in practice experts make use of multiple images) 
and the appendix being more difficult to identify on a 
single CT image than a femur in an X-ray image (as in 
Chen et al., 2017).

The task studied by Chen et al. (2017) was a true per-
ceptual task. To identify whether a fracture existed, 
participants needed to learn what a normal head of the 
femur looks like and then determine if the femur in the 
test image differed sufficiently from normal. In other 
words, participants were comparing what they saw to 
their visual representation of how ‘normal’ looks. As the 
location of fracture (if present) was similar in each case, 
participants likely learned to rapidly direct their atten-
tion to the relevant area. Crucially, they could do this 
task without needing to understand how the X-ray image 
was created or why the head of femurs appear the way 
they do. Such information was not required for their 
diagnosis.

For our study, making a diagnosis was more complex. 
On further questioning the experts that provided the 
expert ratings for our stimuli, it was apparent that they 
were basing their diagnosis on an understanding of how 
liver ultrasound images are created along with knowl-
edge of how the structure of a normal liver looks like and 
how hepatic steatosis affects the appearance of this struc-
ture. Instead of just making a perceptual judgement, the 
experts performed a series of deductions, based on their 
extensive background knowledge. To complicate matters 
further, the diagnosis process often differed from image 
to image. Not all the cues that were relevant in one image 
would necessarily be relevant in a second image. For 
example, for one image, the first observation an expert 
may make is that the ultrasound gain when acquiring the 
image was too high. They were able to make this deter-
mination based on their knowledge of what liver blood 
vessels should look like on an ultrasound. The determi-
nation that the gain was too high influenced what cues 
they subsequently considered. What cues need to be 
considered and even what the cues mean therefore var-
ied from image to image. A successful diagnosis needs 
to utilise both an understanding of how the image was 
formed as well as how hepatic steatosis can affect the 
underlying structure of the liver and how this, in turn, 
affects how the liver appears in ultrasounds. In diagnos-
ing the images, the experts were drawing upon a wealth 
of detailed, domain-specific knowledge.

When designing Experiment 2, we were aware that 
experts were using background knowledge to inform 
their judgements. Although we couldn’t hope to teach 
our participants the background medical knowledge that 
the experts had, we wondered to what degree we could 
approximate the expert decision-making process without 
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it. This is what prompted our discussions with experts to 
determine what strategies they were using. However, the 
process and strategies that experts engage in when mak-
ing a diagnosis may not be entirely represented in their 
explanation of the process they undertake (Feldon, 2007). 
This is because it can be difficult for experts to articu-
late implicit knowledge that they rely on (Roads et  al., 
2016). Additionally, the features or cues that experts 
and novices perceive to be useful for diagnosis can dif-
fer (Robson et al., 2020). Therefore, detailed annotations 
that are based on the cues that experts verbally describe 
as relevant for making a diagnosis may not translate 
well when training novices. An interesting alternative 
training approach that may overcome such challenges 
suggests using attentional highlighting, whereby nov-
ices are trained to follow the gaze patterns that experts 
use whilst completing the task (Roads et  al., 2016). It is 
unclear whether this approach would offer any additional 
training benefits for tasks that seem to rely heavily on 
domain-specific knowledge but is a potential avenue for 
future research.

Finally, it is important to acknowledge that expertise is 
typically acquired after many years and experience with a 
wealth of exemplars. Therefore, it is not surprising that we 
were unable to train people to achieve expert performance 
in such a short amount of training. The features (or rules) 
that we trained participants on in Experiment 2 may have 
been unhelpful because the information that they provide 
is too broad or abstract. Specifically, these rules do not 
provide information about the instantiations of features—
the varying perceptual manifestation of features (Brooks 
& Hannah, 2006). Gaining a vast amount of experience 
with different exemplars aids in learning how features are 
instantiated. Therefore, future research could investigate 
whether expert levels of performance could be achieved in 
this task by simply providing a longer amount of training.

In conclusion, taken together, our experiments indi-
cate some limits of perceptual training. Although 
we found that perceptual training can lead to rapid 
improvements in performance, even for a more difficult 
medical image discrimination task, our participants 
were not able to achieve expert levels of performance. 
It is possible that our task requires extensive domain-
specific knowledge to reliably interpret the images, or 
alternatively that the amount of training was not suffi-
cient. Future work will be needed to better identify the 
types of tasks where perceptual training is likely to be 
most useful, but the current work offers a useful start-
ing point. The current work also emphasises the impor-
tance of distinguishing between the rate of the increase 
in performance and the total increase in performance. 
Whilst it has been repeatedly shown that perceptual 
training typically results in an initial rapid increase in 

performance, it is equally important to determine what 
level of performance can be achieved by perceptual 
training, relative to the level of performance achieved 
by experts. Historically, the perceptual training litera-
ture has tended to neglect the latter point.
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