UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title

How effective is perceptual training? Evaluating two perceptual training methods on a
difficult visual categorisation task

Permalink
https://escholarship.org/uc/item/Owm2w81m|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

ISSN
1069-7977

Authors

Marris, Jessica
Perfors, Andrew
Mitchell, David

Publication Date
2021

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/0wm2w81m
https://escholarship.org/uc/item/0wm2w81m#author
https://escholarship.org
http://www.cdlib.org/

How effective is perceptual training? Evaluating two perceptual training methods

on a difficult visual categorisation task

Jessica Marris (j.marris @student.unimelb.edu.au)
School of Psychological Sciences, University of Melbourne, Melbourne, Australia

Andrew Perfors (andrew.perfors @unimelb.edu.au)
School of Psychological Sciences, University of Melbourne, Melbourne, Australia

David Mitchell (dpm.mitchell @ gmail.com)
Radiology, Sligo University Hospital, Sligo Ireland
Department of Radiology, The Royal Melbourne Hospital, Melbourne, Australia

Wayland Wang (wayland.wang @mbh.org.au)
Department of Radiology, The Royal Melbourne Hospital, Melbourne, Australia

Mark W. McCusker (mark.mccusker @mh.org.au)
Department of Radiology, The Royal Melbourne Hospital, Melbourne, Australia
Department of Radiology, University of Melbourne, Melbourne, Australia

Timothy John Haynes Lovell (tim.lovell @mbh.org.au)
Department of Radiology, The Royal Melbourne Hospital, Melbourne, Australia

Robert N. Gibson (robert.gibson @mh.org.au)
Department of Radiology, The Royal Melbourne Hospital, Melbourne, Australia
Department of Radiology, University of Melbourne, Melbourne, Australia

Frank Gaillard (frank.gaillard @mh.org.au)
Department of Radiology, University of Melbourne, Melbourne, Australia

Department of Radiology, The Royal Melbourne Hospital, Melbourne, Australia

Piers Douglas Howe (pdhowe @unimelb.edu.au)

School of Psychological Sciences, University of Melbourne, Melbourne, Australia

Abstract

Perceptual training leads to improvements in a wide range of
simple visual tasks. However, it is still unclear how effective
it can be for more difficult visual tasks in real-world domains
such as radiology. Is it possible to train people to the level of
experts? If so, what method is best, and how much training is
necessary? Over four training sessions, we trained medically
naive participants to identify the degree of fatty liver tissue
present in ultrasound images. We found that both COMPARI-
SON and SINGLE-CASE perceptual training techniques resulted
in significant post-training improvement, but that the SINGLE-
CASE training was more effective. Whilst people showed rapid
learning with less than one hour of training, they did not im-
prove to the level of experts, and additional training sessions
did not provide significant benefits beyond the initial session.
This suggests that perceptual training could usefully augment,
but not replace, the traditional rule-based training that medical
students currently receive.

Keywords: perceptual training; comparison; radiology; exper-
tise

Introduction

Perceptual learning is defined as the improvement in task per-
formance that occurs with sensory experience (Sagi, 2011).
It has been shown to occur across a range of low-level
visual tasks including motion direction detection (Ball &

2678

Sekuler, 1987), orientation discrimination (Fiorentini & Be-
rardi, 1980), and texture discrimination (Karni & Sagi, 1991),
using simple stimuli such as random dot motion, line seg-
ments, and Gabor patches. Perceptual training is based on
pattern recognition, which enables learners to become sensi-
tive to important features and relationships even when these
relationships are difficult to verbalise (Kellman & Garrigan,
2009).

It has been shown that perceptual training can result in
a substantial improvement in performance for a variety of
real-world visual tasks in medical domains such as radiology
(Chen, HolcDorf, McCusker, Gaillard, & Howe, 2017; Frank
et al., 2020; Johnston et al., 2020; Sha, Toh, Remington, &
Jiang, 2020; Sowden, Davies, & Roling, 2000), dermatol-
ogy (Xu, Rourke, Robinson, & Tanaka, 2016), histopathology
(Krasne, Hillman, Kellman, & Drake, 2013), and cytology
(Evered, Walker, Watt, & Perham, 2014). Because some as-
pects of perceptual expertise are difficult to express verbally,
perceptual training has been proposed as a potential supple-
ment to the traditional approach to training medical profes-
sionals like radiologists, who are currently trained to diagnose
medical images in a primarily rule-based fashion (Johnston



et al., 2020). However, it remains unclear how much bene-
fit people can receive from perceptual training: can it lead to
expert-level performance in highly complex domains?

While many studies have demonstrated that perceptual
training results in rapid learning, few studies have compared
the performance of participants trained by perceptual training
to that of experts. One exception is a study by Chen et al.
(2017), in which medically naive participants were trained to
identify hip fractures in X-ray images. After only two training
sessions (1280 training images in total), the mean accuracy
of novices was approximately 90%, which was slightly lower
than experts (radiology residents and board-certified radiolo-
gists, who achieved approximately 94% accuracy). However,
the top five novices performed at a level comparable to the
board-certified radiologists after less than one hour of train-
ing. These findings support the idea that perceptual training
can result in a level of expertise that is practically useful, and
thus could usefully augment the traditional rule-based train-
ing paradigm.

An alternative possibility is that the task in Chen et al.
(2017) may have been relatively easy for novices to learn
and perceptual training would have been less effective for
a more difficult task. Consistent with this, in a more diffi-
cult task that involved identifying whether appendicitis was
present in a single axial image from a computed tomography
scan, Johnston et al. (2020) found that experts substantially
outperformed trained novices. Consequently, it remains un-
clear whether perceptual training can lead to similar levels of
performance as experts on more difficult radiological tasks.

A second unresolved issue is which perceptual training
methodology is the most effective. The standard approach,
which has been used by the majority of studies, involves pre-
senting a single stimulus on each trial. The participant an-
swers a specific question about the image (e.g., “Is there a
hip fracture in this image?”’) and receives immediate feed-
back. This method was used by both Chen et al. (2017) and
Johnston et al. (2020), along with studies involving the cat-
egorisation of cancerous lesions (Xu et al., 2016) and the
recognition of histopathology patterns (Krasne et al., 2013).

An alternative training method, which we refer to as com-
parison training, presents multiple stimuli simultaneously on
each trial. These stimuli generally depict different categories
(e.g., a normal and abnormal medical image) and require an
alternative forced choice response (e.g., “Which image is ab-
normal?”), which is followed by feedback. While only a
few perceptual training studies have used comparison train-
ing (Evered et al., 2014; Sha et al., 2020), similar techniques
are widely used in category learning experiments (e.g., Kang
& Pashler, 2012; Meagher, Goldstone, Nosofsky, & Carvalho,
2017).

The proposed advantage of comparison training is that it
enhances discriminative contrast by highlighting commonal-
ities and differences (Kang & Pashler, 2012). Comparing
stimuli that represent differing categories can improve dis-
crimination ability (Hammer, Bar-Hillel, Hertz, Weinshall, &
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Hochstein, 2008), particularly when discriminating between
highly similar categories (Carvalho & Goldstone, 2014). De-
spite the potential benefits of comparison training, to our
knowledge, there are no perceptual learning studies with
complex real-world stimuli that have compared comparison
training to standard (single-case) perceptual training.

A third unresolved issue is the amount of training required
for perceptual learning with complex visual stimuli. Most
studies have used multiple sessions (generally between two
and four), which is consistent with the positive effects of dis-
tributed practice (Donovan & Radosevich, 1999). However,
it is unclear whether multiple sessions are, in fact, neces-
sary. Several previous studies used relatively short training
sessions because these studies were limited by the number of
stimuli they had access to. Given that repeating images within
a training session does not appear to reduce the effectiveness
of the training (Chen et al., 2017; Sha et al., 2020), these
studies might have achieved the same result using just a sin-
gle, but longer, training session. Alternatively, it may be that
while fewer training sessions is adequate for relatively simple
images, more sessions may be required when the domain or
task is more challenging.

The current study was designed to address these three is-
sues. First, we specifically chose a task that trainee radiolo-
gists find difficult — identifying the degree of fatty liver dis-
ease present in ultrasound images — as this is the type of task
where experts are likely to outperform non-experts, and com-
pared the performance of our trained participants to that of
experts. Second, we evaluated performance under two dif-
ferent types of perceptual training techniques, COMPARISON
and SINGLE-CASE training. Third, we investigated the learn-
ing benefits of multiple training sessions.

We hypothesised that both types of perceptual training
regimes would lead to an improvement in post-training per-
formance, but that COMPARISON training would be more ef-
fective because the task requires discriminating between very
similar images. Due to the large literature on distributed prac-
tice (Donovan & Radosevich, 1999), we further hypothesised
that multiple training sessions would result in more learning
beyond that of a single training session but, regardless of the
extent of training, we would not be able to train medically
naive participants to the level of experts on such a difficult
task.

Method
Participants

We recruited 186 medically naive adults from Prolific Aca-
demic to complete a four session experiment online. A pre-
screening questionnaire was used to ensure that all partici-
pants had normal-or-corrected-to-normal visual acuity, nor-
mal colour vision, and no prior experience in radiology.
Participants were compensated for each session, receiving
£11.05 for completing all sessions. Twenty participants did
not complete all sessions and five were excluded due to re-
peating a session, resulting in 161 people in the dataset (89



female; Mge = 37.35 years; SDyee = 12.60 years; all resided
in the UK, US, Canada, Australia, or New Zealand).

We additionally recruited a group of experts; three con-
sultant radiologists, one radiology fellow, and one radiology
registrar from the Royal Melbourne Hospital. These experts
did not participate in the experiments but instead graded the
stimuli and provided a measure of expert performance.

Materials

The stimuli were abdominal ultrasounds of 505 unique livers
obtained from a tertiary care centre. Each liver was repre-
sented by a collage with four ultrasound views of it (Figure 1).
We used a collage of four images to depict each case instead
of a single image, because in practice, radiologists make de-
cisions about these types of cases based on several images.

As there is no objective measure to determine the degree of
fatty liver tissue, we used ratings from our experts to establish
a gold standard consensus grade. The experts independently
reviewed each collage and graded the degree of fatty liver dis-
ease (hepatic steatosis) present, ranging from 1 (Normal) to 7
(Severe). The average of all of the five experts was used as the
gold standard for training and assessing naive participants.
Because we wished select stimuli that were rated consistently
by the experts, we excluded cases where any expert’s rating
was more than one off the consensus grade. This resulted in
a stimulus pool of 386 unique collage images for use in the
experiment.

Figure 1: Example of a collage of two transverse and two longi-
tudinal liver ultrasound images from a single case. In this example,
the degree of fatty liver disease is 1 (Normal).

The collages were split into a training set and two test sets
(286 collages in the training set and 50 collages in each test
set) such that the distribution of grades was balanced between
each set. There was no overlap between the training and test
sets and the same sets were used across all participants.

The experiment was created using jsPsych (de Leeuw,
2015) and participants completed it online using a laptop or
desktop computer; they were prevented from using tablets
and smartphones. Each collage was resized to a width of 750
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pixels and a height of 562.5 pixels. A minimum browser win-
dow of 1024x700 pixels was required.

Design and Procedure

We used a pre-test/post-test design, with two possible percep-
tual training conditions (between-participants; COMPARISON
and SINGLE-CASE, described below). For technical reasons,
the single-case training condition was run after the compari-
son training condition. In both training conditions, the exper-
iment occurred over four sessions, with demographic ques-
tions and a pre-training test at the beginning of the first ses-
sion, perceptual training in sessions 1-4, and a post-training
test at the end of the fourth session. Participants were pro-
vided with a 48 hour window to complete each session, which
was followed by a 24 hour break before the next session be-
gan. Thus, depending on when during the 48 hour window
the participant completed the session, the participant would
experience a break of between 24 and 120 hours between ses-
sions. All of the sessions were self-paced, with no limits on
the time taken to view and respond on each trial.

At the start of each session, participants were shown a brief
explanation of the grading scale with some example images
and an annotated image that identified the main differences
between normal and severe fatty liver disease. All partici-
pants then completed the pre-test, where they were asked to
grade the degree of fatty liver tissue present (using the 7-point
grading scale described previously) for 50 unique collage im-
ages (Figure 1 provides an example of a collage image for a
single-case). The collage images were presented sequentially
(a single case per trial) in a randomised order. Participants
used the keyboard to grade each collage according to the 7-
point grading scale. No feedback was provided during the
pre-test.

There were 100 training trials per session for both of the
training conditions (400 trials total). Images were randomly
sampled from the training set and could be repeated across
sessions or even within a session. To motivate participants
throughout the training, points were awarded based on perfor-
mance. Participants were able to monitor and compare their
points across sessions.

After completing the final training phase in session four,
all participants completed a post-test. The format of the post-
test was the same as the pre-test, except the 50 collage images
were novel.

Single-case Training On each trial in the SINGLE-CASE
perceptual training (n = 90 participants), participants were
presented with a collage consisting of four images of the same
case, and were asked to rate the degree of fatty liver disease
on the 7-point scale described above. This was a similar for-
mat to the pre-test and post-test. However, after they pro-
vided their assessment, the correct grade was immediately
presented underneath the image for review. In addition, a
feedback message was presented in coloured text, with the
content of the message determined by how close the response
was to the correct answer (“Spot on! Correct” in green for



Which is 3: Mild?

The other is 5: Moderate

Figure 2: Example of a COMPARISON training trial. In each trial,
participants were presented with two panels of images. Each panel
contained a single liver case, with each case depicting a different
degree of fatty liver tissue. From the two livers, participants were
asked to make a discrimination choice. In this example, the left
panel depicts a grade of 5 (Moderate), the right panel depicts a grade
of 3 (Mild), and participants were asked which panel was Mild.

correct, “Almost” in blue for one grade from the correct an-
swer, “Not quite” in orange for two grades from the correct
answer, or “Incorrect” in red for responses more than two
grades from the correct answer).

Comparison Training In the COMPARISON training (n =
71 participants), people were asked to compare two different
livers. They were thus presented with two panels of images
(each consisting of half of a collage image from a single case)
simultaneously on each trial. We chose to present half of each
collage in order to keep the total number of individual im-
ages of the livers (i.e., four) consistent with the SINGLE-CASE
training condition. The two panels were positioned side-by-
side with a small gap between them (Figure 2). Each panel
depicted a different grade of fatty liver tissue.

The training task in the COMPARISON condition differed
from the SINGLE-CASE condition, as we asked people to dis-
criminate between two different grades of fatty liver tissue.
At the start of each trial, a prompt informed participants about
the discrimination that they would need to make (e.g., “Which
image is 3: Mild?”). The prompt also contained information
about the grade of the other image (e.g., “The other image is
5: Moderate™). Participants indicated which image they be-
lieved matched the prompt and then received immediate feed-
back about whether they were correct or not.

The difficulty of the comparisons was adapted throughout
the training, and began with easier comparisons (i.e., cases
that were six grades apart). The difficulty of the comparison
is determined by the distance between the grades of the livers
being compared.

A modified 2-up 1-down adaptive staircase procedure
was used, whereby correct responses on two previous trials
stepped a participant up to the next difficulty level (e.g., from
six grades apart to five apart, and so on). Following an incor-
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Figure 3: Percentage of responses for each possible distance from
the consensus answer in the pre-test and post-test for each training
condition. A distance of 0 is equivalent to a correct response (con-
sistent with the consensus answer). In both conditions, people gave
more correct or near-correct answers in the post-test, indicating that
they learned something.

rect discrimination, participants returned to a lower difficulty
comparison. The adaptive nature of the training meant that
participants progressed up and down, depending on their per-
formance.

Results

Due to a technical error, data from 28 trials across seven par-
ticipants was missing, but the remaining data from these par-
ticipants was retained. The dataset and analyses can be found
at https://github.com/Jjmarris/pt-livers. People in
the SINGLE-CASE training took an average of 9 minutes to
complete each session, while those in the COMPARISON train-
ing took 12.

Figure 3 shows a comparison of pre-test to post-test per-
formance across both training conditions. It is evident that in
both conditions, people were more accurate in the post-test,
making more responses that were closer to the correct answer
(distances O or 1) and fewer that were further (distances 5 or
6). This suggests that there was some learning between pre-
test and post-test.

In order to better quantify overall improvements in perfor-
mance as well as compare across conditions, we calculated
each participant’s mean error on each test, which represents
their mean distance from the consensus answer. This is shown
in Figure 4. For the sake of comparison, we also show the per-
formance of our group of experts on the same images that the
medically naive participants were tested on in the pre-test and
post-test. For these experts, we needed to use a slightly dif-
ferent reference point than that used to assess performance of
the naive participants. To avoid ‘double-dipping’ the data, we
assessed the performance of each expert in turn, by calculat-
ing their performance relative to the other four experts. From
this, we calculated an overall measure of expert performance,
which is shown in the green bars. It is evident that although
both types of perceptual training were successful for training
medically naive participants, as indicated by the post-test im-
provement, the training alone was not sufficient for them to
reach similar levels of performance as the group of experts.



Mean error on the pre-test and post-test images
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Figure 4: Performance by training condition on the pre-test and
post-test images for medically naive participants. The experts did
not undergo training, but provide a measure of expert performance
on the same images. The y axis shows the mean error (distance
from the consensus answer); thus, lower is better. Each dot is the
mean error for one individual, and error bars represent the standard
error. Both training conditions improved from pre-test to post-test,
but improvement was greater for SINGLE-CASE training.

In order to quantify whether performance varied by train-
ing condition or test, we performed a mixed 2x2 ANOVA on
all of the non-expert data. Training condition was a between-
subjects factor (COMPARISON or SINGLE-CASE), test phase
(PRE or POST) was a within-subjects factor, and mean error
was the dependent variable. As expected, there was a signif-
icant main effect of the test phase, F(1,159) = 196.79,p <
.001,1126 = .340, with lower mean error in the post-test com-
pared to the pre-test indicating successful learning.

There was also a significant main effect of training condi-
tion, F(1,159) =9.74,p = .002711%; = .035 and a significant
interaction F(1,159) =24.74,p < .001,n% = .061. This sug-
gests that the effect of training was greater in the SINGLE-
CASE condition. Post-hoc ¢-tests with Bonferroni corrections
supported this interpretation. There was no significant differ-
ence in performance between the training conditions on the
pre-test, 7(148.28) = —0.72,p = .944, but on the post-test
participants who received SINGLE-CASE training had signif-
icantly lower error than people who received COMPARISON
training, 7(139.38) = 6.56, p < .001.

How did learning proceed over the course of training? Is it
possible that medically naive participants could have reached
the level of experts had we provided them with only a few
additional sessions? Figures 5 and 6 address these questions
by presenting the training data broken down by session.

For the COMPARISON training in Figure 5, mean error is
not a good measure of performance since the training ap-
proach is adaptive; we therefore examine the difficulty level
of the comparison (difficulty is 7 minus the distance between
grades, so that 1 is the easiest and 6 is the most difficult).
It is evident that each session is marked by rapid increase in
the difficulty of the comparisons as the algorithm adapts to
each participant; however, performance across sessions does
not appear to improve, with people converging on a diffi-
culty level of around five (i.e., discriminating between liv-
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Figure 5: Performance improvement across time during COMPAR-
ISON training. Each panel corresponds to a session, and the x axis
indicates the trial number within session. The y axis reflects the dif-
ficulty level of the comparison, with 6 being the most difficult and 1
being the easiest. Participants improve rapidly within each session
as the algorithm adapts to them, but there is no discernible improve-
ment across sessions; people converge to a difficulty level of five in
all, which corresponds to a difference of two grades between com-
parison stimuli.

ers that are two grades apart) in all sessions. To address
whether the additional three training sessions provided a ben-
efit above what learning was achieved in the first session, we
compared the mean difficulty level on the final training trial
in the first training session and last training session. Eval-
uating performance on the final trial enables us to compare
performance after the learning from the first session has oc-
curred with performance after the learning from all sessions
has occurred. A paired-samples t-test revealed no significant
difference, 1(70) = —1.48, p = .145, suggesting that all of the
meaningful improvement in learning between the pre-test and
the post-test likely occurred during the first session.

For the SINGLE-CASE training in Figure 6, there appears
to be a slight decrease in error over the course of the first
training session, but not in subsequent sessions. We quan-
tified this with a linear model for each session, using error
as the outcome variable and trial number as the predictor. It
was statistically significant for the first session, F(1,98) =
22.77,p < .001, but not for any of the other three. Consis-
tent with this, a paired-samples t-test revealed no significant
difference in the mean error on the final training trial in the
first session and final session, #(89) = 1.42, p = .160. Taken
together, these results suggest that additional training would
not help participants reach the level of expert performance, at
least not within a small number of additional sessions.

Discussion

Our work makes several contributions to the growing litera-
ture investigating perceptual training in real-world, visually
complex domains. First, we replicated the finding that per-
ceptual training improves the classification of medical im-
ages, as seen by the significant reduction in mean error on
the post-training test; less than one hour of training enabled
our participants to generalise their learning to novel images.



This is particularly interesting as we were able to train med-
ically naive participants to do a task that trainee radiologists
find difficult — identifying the degree of fatty liver tissue in
ultrasound images. Whilst our perceptual training was not
as successful as Chen et al. (2017), it is not surprising given
the higher difficulty of the perceptual discrimination required
in our task. However, consistent with Johnston et al. (2020),
perceptual training alone was not sufficient to train people to
the level of experts.

How much does the type of training matter? As two differ-
ent methods have been used in the literature, it was unclear
whether one might be superior. Given the potential advan-
tages of comparison training (e.g., Hammer et al., 2008; Kang
& Pashler, 2012), we expected that discriminating between
different grades of fatty liver tissue would enhance learning,
because the stimuli are highly similar and differences only
become obvious when the stimuli are viewed side-by-side.
However, we found that SINGLE-CASE perceptual training re-
sulted in better generalisation.

One explanation for this finding is that transfer is better
when the task people are tested on aligns closely with the
training task. Another possibility is that the SINGLE-CASE
training allowed people to learn about the full underlying dis-
tribution of different grades of fatty liver tissue in our exper-
iment, since this distribution was the same in both the train-
ing and test sets. Conversely, since comparison training was
adaptive, the distribution of the grades of fatty disease ob-
served by participants would not necessarily have matched
the distribution of grades seen in the test images. Whilst par-
ticipants in the COMPARISON training would have seen more
livers overall (unique and repeated cases), only half of the full
collage of four images for each case was presented on each
trial. This method was chosen to ensure a consistent number
of images were presented in each training condition. Addi-
tionally, it avoided overcrowding the display further, which
could have impacted on learning (e.g., due to higher cogni-
tive load).

We realise that our training method differs from the proce-
dure commonly used in the perceptual training literature (i.e.,
presenting a single image or a pair of images), as we pre-
sented multiple images on each trial in both conditions (i.e.,
the collages). This change was because radiologists gener-
ally make these decisions from multiple ultrasound images.
Whilst it is unclear whether our methodological change im-
pacts on the effectiveness of perceptual training, we show
that perceptual learning occurs when perceptual decisions are
based on multiple simultaneously presented images.

Finally, we found that learning was rapid and that multiple
sessions did not provide substantial benefits to learning, sug-
gesting that we can achieve the benefits of perceptual training
within just one training session. In the COMPARISON train-
ing, people rapidly progressed to more difficult comparisons
within a session but this pattern did not substantially change
over sessions; performance after four training sessions was
not significantly better than after one session. The SINGLE-
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Figure 6: Performance improvement across time during SINGLE-
CASE training. Each panel corresponds to a session, and the x axis
indicates the trial number within session. The y axis reflects the
mean error. Participants show gradual improvement over the first
session, but no noticeable improvement in subsequent sessions.

CASE training also showed a similar lack of benefit for mul-
tiple sessions. For both perceptual training conditions, rapid
initial learning occurred within one session, but learning hit a
ceiling after this point. While it is theoretically possible that
a sufficient number of additional sessions might allow people
to improve to expert levels, the trend suggests that it would
take a very large number. It is also possible that for complex
domains such as this, where successful identification relies on
theoretical knowledge, purely perceptual training alone can-
not produce expert-level classification.

It could be suggested that our comparison of medically
naive participants and experts is not fair because the ex-
perts were evaluated on their own ratings. However, to limit
‘double-dipping’ we evaluated each expert relative to the
other experts, and found that they were all quite consistent
in their ratings. We believe that the comparison to experts is
still useful, as it provides a benchmark for how effective our
training paradigm is.

An avenue for future work is investigating if there are ways
to improve the effectiveness of perceptual training in difficult
tasks. Is it possible to boost learning further? Recent work by
Frank et al. (2020) suggested that perceptual learning might
be improved if it is augmented with detailed feedback during
training. In their work, supplementing partial feedback (e.g.,
“Response correct: Lesion is present” and “Identified loca-
tion of the lesion is incorrect”) with information about the lo-
cation (with annotations) was necessary for perceptual learn-
ing of both calcification and distortion lesions in mammo-
grams. Additionally, people that received detailed feedback
showed long-term retention when tested six months later, but
people who only received partial feedback did not. This find-
ing could explain the success of the training in Chen et al.
(2017), who used annotated feedback that directed attention
to the location of the bone fracture.

Whilst the possibility of augmenting perceptual training
with detailed feedback provides a promising avenue for fu-
ture work, there are some practical considerations. It can be



time consuming, costly, and difficult for experts to annotate
or label images. Additionally, for some diagnoses, it may be
difficult to isolate and communicate the particular regions of
interest to people that are medically naive. One potential so-
lution, which we plan to investigate in our future work, is to
test the benefit of providing limited numbers of annotated im-
ages with verbal “perceptual rules” via augmented perceptual
training.

Our findings have implications for future applications of
perceptual training. We demonstrate that perceptual training
can be practically useful and efficient: even in a complex real-
world domain, people can significantly and rapidly improve
their performance with less than one hour of training. Al-
though people did not reach expert performance, we show
that perceptual training is a tool that can be used to achieve
rapid initial learning, which can be subsequently refined fur-
ther. A combined approach would offer multiple benefits.
Perceptual training would provide trainees with the experi-
ence of a large number of exemplars, including those that
may not be often seen in practice (Johnston et al., 2020). This
would provide a robust foundation for subsequent rule-based
learning and clinical reasoning.
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