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Abstract

What mechanisms underlie people’s ability to use cross-
situational statistics to learn the meanings of words? Here we
present a large-scale evaluation of two major models of cross-
situational learning: associative (Kachergis, Yu, & Shiffrin,
2012a) and hypothesis testing (Trueswell, Medina, Hafri, &
Gleitman, 2013). We fit each model individually to over 1500
participants across seven experiments with a wide range of
conditions. We find that the associative model better captures
the full range of individual differences and conditions when
learning is cross-situational, although the hypothesis testing
approach outperforms it when there is no referential ambiguity
during training.
Keywords: Cross-situational word learning; language acqui-
sition; Zipfian distributions

Introduction
The ability to acquire language is not only a fundamental part
of what makes us human, but a mystery: how do we accom-
plish it given the complexity of the learning task? Even in an
apparently simple task like word learning, many real-world
contexts involve multiple possible referents for any one label
(Pinker, 1984). How can a learner figure out which referent
corresponds to which label? One suggestion is that people
can leverage the statistics that come from observing multiple
ambiguous presentations of words and objects. This sort of
cross-situational word learning has been demonstrated in both
children and adults (Yu & Smith, 2007; L. Smith & Yu, 2008).
However, there is still considerable debate about what mech-
anisms underlie cross-situational word learning and what rep-
resentations are learned (Kachergis & Yu, 2018).

One major theory of cross-situational learning, known as
the associative framework, proposes that people track de-
tailed word-object co-occurrence statistics across many pre-
sentations (Vouloumanos, 2008; Yu & Smith, 2007). By con-
trast, the hypothesis testing framework suggests that people
track at most one word-object pair theory for each word (or
object) and update these hypotheses during learning (Medina,
Snedeker, Trueswell, & Gleitman, 2011). A number of com-
putational models have been developed based on both frame-
works but no consensus has emerged about which account
better describes people’s learning. We argue that this has oc-
curred, at least in part, because of a focus on modeling ag-
gregate rather than individual data, and because existing ex-

periments have not varied the range and variety of learning
conditions sufficiently to differentiate the models.

Here we present and analyze data from seven different ex-
periments with over 1500 participants that vary on a num-
ber of factors including vocabulary size, level of ambiguity,
length of training, distributional structure, and task. We fit
each person’s data to both the associative and hypothesis test-
ing models described in the following sections. Our results
suggest that associative accounts provide the best fit in al-
most all cases, unless there is no ambiguity during learning
and the learning is thus no longer strictly cross-situational.

Associative framework
Associative models propose that people learn word meanings
by tracking the frequency with which words and objects co-
occur across multiple ambiguous presentations. The repre-
sentation is a large word-object matrix in which each cell
contains the associative strength between one word and one
object (Vouloumanos, 2008; Yu & Smith, 2007). This basic
framework has been applied widely, and the model we im-
plement here is one of the most widely used (Kachergis et
al., 2012a). It provides a compelling account of human be-
havior across studies that vary the number of late repetitions
(Kachergis et al., 2012a) and if learning is passive or active
(Kachergis, Yu, & Shiffrin, 2012b; Kachergis & Yu, 2018).

Formally, the goal of the model is to update the association
strength between a word (w) and object (o) within an associ-
ation matrix (Mw,o). It incorporates several psychologically-
motivated parameters that specify the total amount of updat-
ing on each trial (χ), memory fidelity (α), and the bias to-
wards updating the association strength of uncertain versus
already familiar words and objects (λ) with uncertainly of an
item quantified as the entropy across all association strengths
for that item.

Hypothesis testing framework
As an alternative to the memory-intensive associative frame-
work, Medina et al. (2011) outlined a more minimalistic ap-
proach based on storing only a single hypothesis for each
word. The hypothesis represents a guess about the referent of
the word, and is replaced if it is inconsistent with new training
trials or fails to be recalled when the word is present.



Vocabulary Ambiguity Guessing Presentations Distribution Length Relationship N Source
12 3 Yes 108 Uniform Only one syllable 48 H&P (2018) Exp 1
12 3 Yes 108 Zipfian Only one syllable 72 H&P (2018) Exp 1
32 4 Yes 244 Uniform Uniform 79 H&P (2018) Exp 2
32 4 Yes 244 Zipfian Correlated 81 H&P (2018) Exp 2
32 4 Yes 244 Zipfian Random 80 H&P (2018) Exp 2
32 1 NA 244 Uniform Uniform 74 H&P (2018) Exp 3
32 1 NA 244 Zipfian Correlated 77 H&P (2018) Exp 3
32 1 NA 244 Zipfian Random 86 H&P (2018) Exp 3
28 4 Yes 240 Uniform Uniform 171 Exp 1
28 4 Yes 240 Zipfian Random 166 Exp 1
40 4 Yes 240 Uniform Uniform 71 Exp 2
40 4 Yes 240 Zipfian Random 90 Exp 2
28 4 No 240 Uniform Uniform 82 Exp 3
28 4 No 240 Zipfian Correlated 84 Exp 3
28 1 NA 240 Uniform Uniform 159 Exp 4
28 1 NA 240 Zipfian Correlated 151 Exp 4

Table 1: Overview of experimental structure. This table describes all of the experiments whose data we fit. Vocabulary indicates the
number of unique word-object pairs to be learned (which also corresponds to the number of objects present during the test phase). Ambiguity
indicates the number of objects present on each training screen. Guessing indicates whether learning was passive (just watching) or active
(if participants were required to submit a guess after each word during training). Presentations indicates the total number of training trials.
Distribution indicates the frequency distribution of the words and objects across the experiment. Length Relationship indicates the relationship
between the length of words and their frequency during training, with more frequent words being shorter in the Correlated condition. N
indicates number of complete participants. Source indicates the source of the data set: H&P (2018) denotes Hendrickson and Perfors (2018).

We evaluate the Propose-but-Verify hypothesis testing
model (Trueswell et al., 2013), a popular extension of the
original Medina et al. (2011) formulation, which captures
children’s word learning behavior well (Woodard, Gleitman,
& Trueswell, 2016; Aravind et al., 2018). The model involves
a two-stage process. Upon initially being exposed to a word,
the model chooses an object from the as-yet-unmapped ob-
jects in that trial and maps it to that word to form a word-
object hypothesis. The initial probability of later recalling
that mapping is denoted by a free parameter αinitial . On each
subsequent exposure to the word, if the model recalls the hy-
pothesis and the corresponding object is present, the proba-
bility is updated to a different memory strength indicated by
another free parameter, αcon f irmed . If the hypothesis fails to
be recalled or the corresponding object is not present, a new
hypothesis is established with an unmapped object.

Model comparisons

Many previous papers have compared these two modeling ap-
proaches in terms of how well they fit experimental data (e.g.,
K. Smith, Smith, & Blythe, 2009; Kachergis et al., 2012b;
Rasilo & Räsänen, 2015; Kachergis & Yu, 2018; Aussems
& Vogt, 2018; Stevens, Gleitman, Trueswell, & Yang, 2017).
Despite this effort, no consensus has emerged. One reason
may be the focus on modeling aggregate performance using
one optimal set of parameter values per model for all learn-
ers, which ignores individual differences. This approach may
favor highly stochastic models that can fit different people’s
responses with a single parameter, rather than models that can
fit the behavior of more people using individual parameter
values. Moreover, comparison studies commonly fit these

models to experiments that involve relatively few learners,
and have a small number of conditions which do not cap-
ture the variation across conditions in the literature. Finally,
such studies tend to use uniform word frequencies that do not
reflect the highly-skewed distribution of words in natural lan-
guage, which limits the generalizability to real-world word
learning (Hendrickson & Perfors, 2018).

In this paper we address these issues by evaluating a hy-
pothesis testing model and an associative learning model
against experimental data involving over 1500 participants
and spanning the broad range of conditions shown in Table 1.
We varied the distribution of the words and objects, the size of
the vocabulary to be learned, whether the task was passive or
active, the number of presentations during training, the level
of ambiguity during learning, and the relationship between
the length of the word and word frequency. We fit parame-
ter values for each learner by optimizing the log-likelihood of
model response probability for each of the word-object test
trials. When comparing models, we penalize for additional
parameters by converting the log likelihood to AIC values
(Akaike, 1974).

Experiments

The empirical data that we use for model evaluation includes
data from the eight conditions from Hendrickson and Perfors
(2018) in addition to eight additional new conditions. We
describe each in turn.



Hendrickson and Perfors (2018)

The goal of the work in Hendrickson and Perfors (2018) was
to explore cross-situational learning when the words followed
either a ZIPFIAN or a UNIFORM distribution. The first exper-
iment involved presenting participants with a small vocabu-
lary of words in one of the two distributions. The second
increased the vocabulary and ambiguity level, while adding a
condition in which the length of the word was negatively cor-
related with word frequency (shorter words were more fre-
quent). The third evaluated the effect of removing ambiguity
during training.

Procedure. Each experiment consisted of a training phase
and a test phase, though Experiment 1 repeated these phases
multiple times. During training, participants viewed either
3, 4, or 1 objects on the screen at once while they heard the
words for each object presented one at a time in random order.
In experiments with ambiguity during training, participants
were asked to guess which object each word matched. At
test, people were shown all of the items at once and asked
to select the matching object for each word. They were not
given feedback during training or test.

Conditions. In the UNIFORM conditions the words and ob-
jects all occurred with the same frequency, while in the ZIP-
FIAN conditions a few words and objects occurred very fre-
quently and many words occurred very infrequently or only
once across training. The pairing of words and objects and
trial order was randomized across participants.

Materials. Words varied in length from one to three sylla-
bles and were designed to sound English-like as well as be
maximally distinct from each other. They were generated
by the AT&T Natural Voices Text-to-Speech tool (Crystal
voice). The objects were selected from the NOUNS image
corpus (Horst & Hout, 2015) and each image was 150x150
pixels displayed against a white background. Hendrickson
and Perfors (2018) contains the full set of stimuli.

Participants. Their 597 participants were recruited from
Amazon Mechanical Turk (AMT). Our four additional exper-
iments (with 974 participants) were also run on AMT, paying
US$3.25 for the ∼20 minute task.

Experiment 1

Experiment 1 provides a near replication of Experiment 2
of Hendrickson and Perfors (2018), a design aimed to ap-
proximate learning conditions when the meaning of words
is ambiguous. There were two minor differences. First, their
experiment included four single-presentation items in order
to check for participant cheating; we omitted those in order
to ensure that the UNIFORM distribution contained no low-
frequency items. As a result, we had 240 rather than 244
total presentations and 28 rather than 32 test items. Second,
we did not include their second ZIPFIAN condition, in which
the length of the word and word frequency was correlated.
337 individuals provided complete data, half in the UNIFORM

condition and half in the ZIPFIAN condition.

Experiment 2
A number of simulation studies have suggested that increas-
ing the number of items to be learned should be particularly
challenging for learners in Zipfian environments (Vogt, 2012;
Reisenauer, Smith, & Blythe, 2013). In Experiment 2 we
therefore replicated the design of Experiment 1 but with 40
unique word-object pairs instead of 28. We presented each
word slightly less frequently in order to match the total num-
ber of word-object presentations in Experiment 1. In the test
phase 40 rather than 28 objects were displayed, resulting in
a more difficult test. Complete data was collected from 161
individuals, with roughly half assigned randomly to the UNI-
FORM and ZIPFIAN conditions.

Experiment 3
In all of the experiments so far, participants have been re-
quired to respond by selecting a best-guess object after each
word was presented during training. However, recent work
has suggested that forcing people to guess may influence the
representation that they learn (Aussems & Vogt, 2018). We
address this possibility in Experiment 3, which is identical
to Experiment 1 but removes the obligation to guess during
training. Instead of waiting for a guess after each word, the
next word is played automatically after 2000 ms.

The other difference from Experiment 1 is that the length of
each word was correlated with its frequency in the ZIPFIAN
condition, as is found in natural language and Hendrickson
and Perfors (2018). Complete data was collected from 166
individuals, with roughly half assigned randomly to the UNI-
FORM and ZIPFIAN conditions.

Experiment 4
Experiment 4 provides a near replication of Experiment 3 of
Hendrickson and Perfors (2018), whose goal was to approx-
imate learning when the meaning of words was unambigu-
ous. The only differences, as in Experiment 1, were that we
removed the four “cheating check” items and thus had 240
presentations and 28 test items, and we had only one ZIP-
FIAN condition in which word length was correlated with fre-
quency. Additionally, since there was no ambiguity during
training, participants were not required to guess. Instead, the
timing of item presentation matched Experiment 3. Complete
data was collected from 310 individuals, with roughly half as-
signed to the UNIFORM and ZIPFIAN conditions.

Model Fitting
Both models were fit to the individual data of each person in-
dependently by minimizing the negative log likelihood across
all responses in the test phase. Every person participated
in exactly one condition and thus parameters were not con-
strained across conditions in any way. For the associative
model, the likelihood of a correct answer was determined for
each word by dividing the associative mass on the correct
object by the total associative mass across all objects. For
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Figure 1: Distribution of log-likelihood vs. median log-
likelihood values for the hypothesis testing model. The density
plot shows the different distributions of 10,000 simulations produced
by the hypothesis testing model for one individual participant with a
constant set of parameters when using either a single log-likelihood
value or the median of 10 such values. Using the median of 10 val-
ues results in a substantial increase in stability.

the hypothesis testing model, the likelihood was given by the
stored probability value for a correct pairing, smoothing zero
probability values to 0.0001.

Interestingly, the models differed widely from each other in
the variability of the responses probabilities predicted at test.
Given a fixed training trial order and a single set of parameter
values, the associative model has no stochastic aspect to how
the representation is formed. Therefore, the likelihood of a set
of responses given a set of parameters is stable and parameter
estimation was straightforward.1

In contrast, the hypothesis testing model is decidedly ran-
dom about which words are paired with objects when form-
ing hypotheses. This results in the production of markedly
different representations and thus likelihoods from one sim-
ulation to the next, even when the training trials and param-
eter values are constant across runs. In order to address this
issue, we performed ten simulations for each set of param-
eters during the optimization process and used the median
log likelihood across the simulations. This required the use
of a particle swarm optimization algorithm to determine the
optimal parameters, which is more robust to less smooth op-
timization problems.2 It was notable that across the range of
10 likelihood values for a set of parameters, the best value
was markedly better than the median likelihood value, sug-
gesting that optimization routines that rely on the best likeli-
hood given a set of parameters can overestimate the expected
fit to data of a set of parameters, especially for the hypoth-
esis testing model. In addition, the median likelihood from
10 simulations of the hypothesis testing model produces con-
siderably more stable estimates relative to a single simulation
(Figure 1).

The number of parameters differ between the two models,
with the associative model containing three (α,χ and λ) and
the hypothesis testing model containing only two (αinitial and
αcon f irmed). We therefore penalized for model complexity by
converting the log likelihood scores to AIC values; lower AIC
scores indicate a better fit to the data after taking the number
of free parameters into account.

1The optimal parameter values were derived using the default
settings for the optimize function in the SciPy package in Python 3.

2Fitting was done using the PSO package in Python 3 using a
swarm size of 1,000 and a maximum of 50 iterations.
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Figure 2: Overall model performance. The histogram shows the
difference between the AIC score for the hypothesis testing model
and the AIC score for the associative model for each person across
all datasets. Positive scores (which made up 74% of the data) in-
dicate that the associative model had a lower AIC score than the
hypothesis testing model and thus accounted for the data better.

Results

Figure 2 shows the overall performance of the two models
across all individuals. The AIC scores of the associative
model are lower than the hypothesis testing model for 74%
of participants. Since a lower AIC indicates better fit, this
suggests that for most people the associative model provides
a better account of their performance. Next, we turn to ex-
ploring exactly when and where each model does best.

Ambiguity. As the top row of Figure 3 illustrates, the per-
formance of the two models strongly depends on the degree
of ambiguity during training. In conditions with any degree of
ambiguity during training (by presenting three or four items
on each training screen, rather than individually), the asso-
ciative model is a better fit in virtually all cases (97% of par-
ticipants). However, the opposite is true when there is no
ambiguity: when only one item was shown at a time, the hy-
pothesis testing model was favored for 68% of participants.

Word frequency. The near unanimous advantage for the
associative model in ambiguous learning conditions suggests
that the only differences in model performance due to word
frequency might occur in the conditions without ambiguity.
In the conditions with only one item per screen (top left
panel of Figure 3), the hypothesis testing model (red points)
is highly preferred (96% of the time) when the distribution
is UNIFORM. When the word frequency distribution is ZIP-
FIAN (blue points), the two models are roughly even (52% of
participants are better fit by the associative model).

Vocabulary size. The impact of vocabulary size on model
performance differs based on the ambiguity of word mean-
ing during training (bottom row, left and center panels in Fig-
ure 3). When word meaning is ambiguous during training, the
hypothesis testing model does particularly poorly as the vo-
cabulary size increases. (Note that we do not show the 3-item



Figure 3: Model comparisons for different effects. All panels
show the AIC scores for the hypothesis testing model (y axis) plot-
ted against the AIC scores of the associative model (x axis). Values
above the identity line indicate that the AIC score of the associative
model is better (lower). Top: A comparison of the effects of ambi-
guity and word frequency. Each red dot shows a participant in the
UNIFORM condition; blue dots represent people from the ZIPFIAN
condition. Each panel shows a different level of ambiguity during
training (1, 3, or 4 items on screen at once). The associative model
does much better whenever there is ambiguity (and regardless of
distribution), while the hypothesis testing model does slightly bet-
ter when there is only one item on screen during learning. Bottom
left and center: Evaluation of the effects of vocabulary size, broken
down by degree of ambiguity. When training is unambiguous, there
is no consistent effect of vocabulary size on performance; when it is
ambiguous, the hypothesis training model appears to perform espe-
cially poorly when there are more words to be learned. Bottom right:
Regardless of whether participants were passive or active learners,
the AIC favored the associative model.

ambiguous case because vocabulary size in those conditions
was constant at 12 items). Within the unambiguous training
conditions there does not appear to be any consistent effect of
vocabulary size on model performance.

Guessing. In order to evaluate the prediction that forcing
participants to guess during training can bias participants to
adopt hypothesis testing representations (Aussems & Vogt,
2018), the bottom right panel of Figure 3 shows the perfor-
mance of both models as a function of whether participants
had to guess or not. Here we include only data from Ex-
periments 1 and 3, similar experiments that differ in whether
guessing occurs. Both have a vocabulary size of 28 and
ambiguous training (although the relationship between word
length and word frequency differs between the two ZIPFIAN
conditions). Across all conditions the associative model con-
sistently outperforms the hypothesis testing model.

Fitted Parameters
In addition to being useful for model comparison, the best-
fitting parameters across all participants (shown in Figure 4)
provide us with several deeper insights. First, the distribution
of parameter values can tell us something about the distribu-
tion of individual differences across the population. For ex-

Figure 4: Distribution of best fitting parameters across all par-
ticipants. Top row: Hypothesis testing model parameters αinitial
(initial probability of recalling a mapping) and αcon f irmed (later
probability of recalling a mapping). Bottom row: Associative model
parameters α (memory decay rate), χ (amount of updating for each
trial), and λ (bias towards updating uncertain words and objects).

ample, the distributions of α and χ for the associative model
are highly skewed and show ceiling and floor effects, which
suggest these parameters might not capture meaningful vari-
ation across individuals. By contrast, the distributions of the
memory strength parameters for the hypothesis testing model
both display a unimodal peak around relatively high values
with a long tail of low values for some participants. This
suggests a high level of population variance or reflects the
inherent stochasticity of the hypothesis testing model.

It is also useful to compare our best-fit parameters to the
reported values from other studies, which generally fit aggre-
gate data or use other fitting metrics. The distribution of our
fitted values for the two hypothesis testing model parameters
are generally higher than those reported by Trueswell et al.
(2013) in their two experiments: αinitial values of 0.26 and
0.60, and αcon f irmed values of 0.71 and 0.81. On average, our
best-fit parameter values were higher and show less differ-
ence between the initial and confirmed memory strength. It
remains an open question if this difference is due to model-
ing individual and aggregate performance or a shift in strategy
due to experimental conditions.

In contrast to the hypothesis testing model, the values re-
ported for the associative model by Kachergis et al. (2012b)
are largely consistent with our results. Their optimized val-
ues, fit to aggregate data, are α = 0.97, χ = 0.05, and λ = 1.74;
values quite similar to the peaks of our distributions.

Finally, some model parameters strongly depend on the ex-
perimental condition. For example, the multimodal distribu-
tion of λ values (bottom right panel of Figure 4) suggests a
mixture of different strategies across participants. We inves-
tigate this in Figure 5, which separates the best-fit λ values
according to the ambiguity during training. It is evident that
as learning conditions are more ambiguous, the λ value de-
creases. Since λ affects the weight assigned to novel words
relative to familiar words, one interpretation of this is that the
level of ambiguity during training has a strong impact on the
extent to which novel items are emphasized during learning.



Figure 5: Distribution of λ by ambiguity. The best-fit λ values for
the associative model (x axis) are plotted as a function of the level
of ambiguity during training. The distribution of λ when there is no
ambiguity (blue) has higher average values. As ambiguity increases
(red, then green) the estimated λ values get smaller.

Discussion
In this work we investigated which of two computational
models of cross-situational word learning offers a better ac-
count of word learning by individual participants across a
wide range of conditions. For most people, the associative
model (Kachergis et al., 2012a) outperforms the hypothesis
testing model (Trueswell et al., 2013).

The advantage for the associative model is most pro-
nounced in conditions in which the meaning of words is am-
biguous during training, where it provides a better account
for nearly all people. However, in conditions without ambi-
guity of word meaning, the hypothesis testing model outper-
formed the associative model for over 60% of participants.
This advantage for the hypothesis testing model in unam-
biguous training conditions occurred for nearly every partic-
ipant who experienced a uniform frequency distribution of
words, but for participants in conditions with a Zipfian word
frequency distribution the associative and hypothesis testing
models provide the best account equally often.

The impact of other aspects of the learning environment
on the relative performance of the two models was less strik-
ing. The total number of unique words present did not seem
to influence which model was preferred, though there was
some suggestion that the participants whose AIC was worst
for the hypothesis testing model were in the conditions with
the largest vocabulary size. Finally, manipulating if partici-
pants were required to guess during training had no effect on
model preference as all relevant conditions were ambiguous
during training and thus nearly all participants were best fit
by the associative model.

Why the hypothesis testing model, despite multiple stud-
ies showing support for the model, performed consistently
worse in the ambiguous learning contexts that require cross-
situational learning is perhaps the biggest open question
raised by these results. One possibility is that the hypothe-
sis testing model, though designed to account for individual
learning behavior, is not sufficiently flexible to account for the
variation across participants. Restricting the memory strength
to two possible values might provide a good account of aggre-
gate data but be too rigid for matching individual behavior.

Another possible explanation for the worse performance
of the hypothesis testing model is that even if people do form

hypotheses about word-object pairs, they are also incorpo-
rating some co-occurrence information to shape their repre-
sentations. This class of hybrid learning mechanisms, which
incorporate both hypothesis testing and associative learning
mechanisms (Yurovsky & Frank, 2015), provide a sugges-
tion of additional types of models that might better capture
the range of learning behavior in the ambiguous conditions.
Similarly, Pursuit (Stevens et al., 2017), a recent variant of the
Propose-but-Verify model that retains disconfirmed meanings
and counts of referential success, might also improve on the
performance of the earlier hypothesis testing model by find-
ing a balance between testing hypotheses and gathering some
co-occurrence information.

A final explanation of this effect may be due to specific as-
pects of the model fitting in this study. These choices include
how the hypothesis testing model was extended to produce
probability distributions across responses, the 10-fold simu-
lation of parameter values to compute the median log like-
lihood, or the choice of AIC for model comparison instead
of measures that have higher penalties for model complexity
(e.g. BIC) or flexibility (Navarro, Pitt, & Myung, 2004).

Despite the clear advantage across many conditions for one
model in this comparison, further work is clearly needed to
fully understand the learning mechanisms and representations
that underlie word learning. These include evaluating alter-
native models (e.g. Yu & Smith, 2012; Yurovsky & Frank,
2015; Stevens et al., 2017), expanding the range of evalua-
tion techniques, and constraining models with additional data
(e.g. Kachergis & Yu, 2018) or conditions (e.g. Hendrickson
& Perfors, 2018).
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