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Abstract

How does the process of information transmission affect the cultural or lin-
guistic products that emerge? This question is often studied experimentally
and computationally via iterated learning: a procedure in which participants
learn from previous participants in a chain. Iterated learning is a powerful
tool because, when all participants share the same priors, the stationary
distributions of the iterated learning chains reveal those priors. In many
situations, however, it is unreasonable to assume that all participants share
the same prior beliefs. We present four simulation studies and one experi-
ment demonstrating that when the population of learners is heterogeneous,
the behavior of an iterated learning chain can be unpredictable, and is of-
ten systematically distorted by the learners with the most extreme biases.
This results in group-level outcomes that reflect neither the behavior of any
individuals within the population nor the overall population average. We
discuss implications for the use of iterated learning as a methodological tool
as well as for the processes that might have shaped cultural and linguistic
evolution in the real world.
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What makes humans unique? Long debated and much discussed, this question is
not fully resolved within the field, although most agree that it is a complex combina-
tion of our social abilities, our linguistic skills, and our rich cultural history (Gintis, 2011;
Hermann, Call, Hernandez-Lloreda, Hare, & Tomasello, 2007; Pinker & Jackendoff, 2005;
Scott-Phillips, 2014; Sperber, 1996; Tomasello, 1999). All of these proposals are related in
some way to our ability to learn from others and then transmit that information across the
generations. Our social skills are probably one of the key mechanisms by which such trans-
mission occurs, and our language and cultural history are both a result and a cause of such
transmission. Therefore, understanding what dynamics govern the process and outcome of
such transmission is crucial to understanding human cognition.

Even if one accepts that understanding transmission is important, it is far from clear
how, to what extent, and why. One of the most elemental questions is what aspects of
our language or culture are shaped by the people involved in the transmission and what
are shaped by the process of transmission itself. For instance, some have argued that
the characteristics of our language or culture are shaped by the fact that people have to
learn them (Christiansen & Chater, 2008; Deacon, 1997; Kemp & Regier, 2012; Pinker,
2003; Pinker & Bloom, 1990). Whether the brain was also evolutionarily selected for this
learning (Pinker, 2003) or not (Christiansen & Chater, 2008), all of these theories center
on the idea that it is through the process of learning that people (especially children) make
a mark on the products of subsequent generations: the aspects that are easily learned are
those that are more likely to be transmitted to the next generation.

Another view suggests that it is the process of transmission itself – not just the nature
of our minds – that shapes our language and culture. For instance, perhaps linguistic and
cultural products have evolved certain characteristics as an adaptation to the fact that
they must be transmitted from person to person and generation to generation over a finite
and noisy channel (Kirby, 2001; Kirby, Tamariz, Cornish, & Smith, 2015). Of course, it
is entirely possible that they are shaped by both. If that is the case, it is important for
researchers to precisely establish and evaluate how each of these factors might trade off.

One key framework for thinking about and disentangling these two factors is known
as iterated learning, shown schematically in Figure 1. Iterated learning is a particular
kind of cultural transmission in which behavior arises in one individual (or generation) by
learning from the observations of the previous person (or generation) who acquired that
behavior in the same way (Kirby, Griffiths, & Smith, 2014). As more and more people (or
generations) join the chain, we can study the characteristics of the language or the culture
that emerges through this process. As a methodology, the technique is old (Bartlett, 1932),
but with increases in the mathematical, computational, and experimental sophistication in
its application, it has become considerably more popular in the past decade.
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Figure 1 . Schematic illustration of a typical iterated learning paradigm, which assumes that learner
n learns on the basis of the data provided by learner n − 1. Sillhouette images obtained from
http://www.milliande-printables.com/.

Although the iterated learning framework is abstract enough to be applicable to the
evolution of any kind of cultural knowledge, it has proven especially useful as a way to study
the evolution of language. One of the first applications of the paradigm, replicated many
times both experimentally and computationally, was to demonstrate that the process of
transmission can cause the emergence of compositionality. That is, one can evolve structured
languages – in which different parts of an expression map systematically onto different
aspects of meaning – simply by requiring them to be learned and transmitted from person
to person. Several elements are necessary for the emergence of compositionality (Kirby et al.,
2015). First, there must be a bottleneck or pressure for compression: otherwise languages
will become holistic, with distinct, unstructured symbols for each possible meaning rather
than structured components whose elements each map onto a part of meaning (Brighton,
Kirby, & Smith, 2005; Fay & Ellison, 2013; Kirby, 2000). Second, there must be some
kind of pressure for expressivity: otherwise languages will tend to become degenerate, with
multiple meanings expressed with the same symbols (Kirby, Cornish, & Smith, 2008; Perfors
& Navarro, 2014; Silvey, Kirby, & Smith, 2014).

Another application of the iterated learning paradigm is to explain the emergence of
regularity in language. Human languages contain a great deal of variation, but that variation
is not unpredictable: rather, it is conditioned on phonological, sociological, semantic, or
pragmatic factors; truly unconstrained variation is rare or non-existent (Chambers, Trudgill,
& Schilling-Estes, 2003; Givòn, 1985). Confusingly, individual adult learners appear to show
little or no bias for regularization (Hudson Kam & Newport, 2005; Vouloumanos, 2008).
If people show little tendency to regularize, how and why do languages evolve to be so
regular? The iterated learning framework suggests an answer: models and experiments both
demonstrate that weak biases for regularity can be amplified by the process of transmission
(Morgan & Levy, 2016; Reali & Griffiths, 2009; Smith et al., in press; Smith & Wonnacott,
2010). This is because at each stage of transmission, a weak bias creates an asymmetric
pressure in the direction of the bias. Even if each step is small, the effect after many
generations is for the bias to be greatly exaggerated and for irregularities to be evened out.

In addition to insights such as these, another advantage of iterated learning is that
the abstract behavior of iterated learning chains can be characterized mathematically. One
powerful and influential set of results uses the connection between iterated learning designs
and the theory of Markov chains to show that under certain assumptions, iterated learning
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chains will converge to a distribution that depends only on the learners’ priors and the size of
the bottleneck (Griffiths & Kalish, 2007; Rafferty, Griffiths, & Klein, 2014). These analyses
all presume that the people in the chain are Bayesian, combining the data they receive
from the previous generation with their priors according to Bayes’ theorem.1 On the basis
of this mathematical result, iterated learning paradigms have been used in order to reveal
what inductive biases people bring to different tasks, including function learning (Kalish,
Griffiths, & Lewandowsky, 2007), visual working memory (Lew & Vul, 2015), reasoning
about everyday events (Lewandowsky, Griffiths, & Kalish, 2009), and category learning
(Canini, Griffiths, Vanpaemel, & Kalish, 2014).

The analyses of Griffiths and Kalish (2007) are both fascinating and useful, but they
raise a natural question: how do the convergence properties of the chain depend on the
mathematical assumptions involved? There has been some work exploring this issue. For
instance, we know that chains only converge to the shared prior if people at each generation
produce their output by sampling from their posterior distributions; if instead they simply
select the hypothesis with the highest posterior probability, then it will tend to exaggerate
the prior (Kirby, Dowman, & Griffiths, 2007). Exactly how much it does so depends on
how much data people at each generation see: less data result in greater exaggeration of
the prior. This explains both why the presence of a bottleneck changes the outcome of an
iterated learning chain, and how weak biases can be magnified through iterated learning.
Moreover, iterated learning chains don’t always converge to something like the prior or an
exaggeration thereof. For instance, all of the previous results have made the assumption
that the only input to each person is the previous person in the chain, and that each person
generates output without reference to the environment around them. However, we don’t
use language in a vacuum; we use it to talk about things and events in the world. If one
changes the mathematical assumptions to reflect this insight, then the convergent state of
the iterated learning chain more closely resembles the posterior distribution over hypotheses
given the distribution of things or events in the world (Perfors & Navarro, 2014).

The possibility that iterated learning chains do not always converge to the prior
may cast doubt on those studies which use iterated learning to make inferences about the
inductive biases people bring to different problems (Canini et al., 2014; Kalish et al., 2007;
Lew & Vul, 2015; Lewandowsky et al., 2009). However, many of these studies do not
include anything like an external environment: the assumption that all data are generated
by people without reference to the world, inapplicable though it may be to some aspects of
real language learning, might appropriately apply in those laboratory experiments. It does
raise the question, though, of whether any of the other theoretical assumptions are critical
to the idea of convergence to the prior.

Here we investigate the implications of the assumption that all individuals share the
same priors and likelihoods. One might assume that this kind of homogeneity shouldn’t
matter: that “convergence to the prior distribution” when priors are heterogeneous should
simply mean that the outcome of iterated learning reflects the distribution of prior beliefs.
For instance, if 10% of people put all of their belief in hypothesis A and 90% of people put
all of their belief in hypothesis B, one might assume that the convergent distribution will

1It is worth noting that in this context, the presumption that people are Bayesian need not be synonymous
with a claim that people are rational or optimal. Rather, it refers to a much weaker claim: that their behavior
can be described using Bayes’ rule, as discussed in Tauber, Navarro, Perfors, and Steyvers (2017).
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consist of 10% A and 90% B. Alternatively, one might assume that the chains will average
over the priors, resulting in a convergent distribution concentrated on a hypothesis between
A and B.

In this paper we demonstrate that neither of these situations necessarily occurs. If
people do not share the same priors, iterated learning does not converge to the prior in
any meaningful sense (not even the average). In fact, the stationary distribution to which
it does converge is disproportionately influenced by the most biased learners. The same
thing occurs when priors are homogeneous but likelihoods are heterogeneous. This has
important implications for the interpretation of studies that use iterated learning to draw
inferences about people’s inductive biases: such experiments may be reflecting the biases of
only some of the learners, and distorting even those. It also has important implications for
understanding cultural and linguistic change more generally. Perhaps many of the cultural
products that we use today may have been shaped by a minority of learners to whom the
rest of the population adapts.

Is this really a worry? Do people actually vary substantially in their priors or likeli-
hoods, particularly in domains like language learning? We would argue that it is, and they
do. Indeed, although there may be a few situations where people have roughly homogeneous
priors and likelihoods, we suggest that it is those situations that are a minority. Rather, we
argue that most situations involving humans involve substantial individual differences, and
that they are reflected mathematically in heterogeneity of priors and likelihoods.

To see this, consider what it means to specify a prior or likelihood. Mathematically,
the prior p(h) corresponds to the weighting an individual puts on the hypotheses in their
space before having seen data relevant to the learning situation, while the likelihood p(d|h)
does incorporate those data. Thus, the prior captures anything that results in a different
weighting of hypotheses at the beginning of a learning situation. Individual differences in
memory, attention, executive function, motivation, intelligence, or previous experience thus
all have the potential to translate to individual differences in priors because they all have the
effect of making different hypotheses more easily accessible, manipulable, conceptualiseable,
or useable to some people and not others. The likelihood captures not just the effective data
available to the learner (which can be influenced by individual factors such as perception or
attention), but also any assumptions made by learners about the data generation process
(which can be influenced by factors such as confidence or sampling assumptions).

Individual differences in these factors are ubiquitous. The literature robustly docu-
ments substantial variation in intelligence (Deary, Whalley, Lemmon, Crawford, & Starr,
2000), working memory (Barrett, Tugade, & Engle, 2004; Unsworth & Engle, 2007), execu-
tive functioning (Miyake & Friedman, 2012), information processing style (Epstein, Pacini,
Denes-Raj, & Heier, 1996; Humphreys & Revelle, 1984), learning (Ackerman, 1987; Green-
wald, McGhee, & Schwartz, 1998), and decision making (de Bruin, Parker, & Fischhoff,
2007; Stanovich & West, 1998), among many other things. All of these sources of variation
have the potential to translate to effectively different hypothesis weights.

Within the domain of language, individual differences are also more the norm than the
exception. For instance, a recent review paper references hundreds of articles documenting
how a wide range of individual differences contribute to differences in language acquisition
(Kidd, Donelly, & Christiansen, in press). These include differences in phonological per-
ception, visual word recognition, syntactic knowledge, prior linguistic experience, working
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memory, long-term memory, executive attention, efficiency of lexical access, richness of lin-
guistic input, and statistical learning. Most of these things would be expected to manifest as
differences in the priors, because they reflect properties of the individual’s mind rather than
anything to do with the data or assumptions about the data generation process. Moreover,
even the most staunchly nativist proponent of Universal Grammar would strongly endorse
at least one source of prior heterogeneity: the difference between child and adult learners.

Overall, individual differences are more the rule than the exception across nearly all
domains of cognition, and in many if not most situations these differences may be realised
or translated as differences in prior beliefs. Precisely characterising what those differences
are and how they translate to priors is far beyond the scope of this paper – indeed, it is the
work of decades. Our focus here is more narrow: when there is variability in priors between
people, how does this affect the shape of the distribution that emerges via iterated learning?
Given the mathematical generality of the underlying framework, our work is relevant to
any situation in which heterogeneous populations of learners transmit data to each other,
encompassing (at least in principle) circumstances as divergent as linguistic evolution, the
transmission of mathematical knowledge across generations, or what happens in a chain of
gossip among friends.

We begin with four simulation studies that highlight how iterated learning chains be-
have when there are learners with qualitatively different biases, across a variety of situations
and within a variety of formalizations. Although details vary, one commonality we observe
is that learners with stronger biases have a disproportionate effect on the convergent dis-
tribution; to what extent that qualitatively alters the results depends on factors including
the nature of the bottleneck and the overall composition of the rest of the populations. We
follow the simulations with an illustrative empirical investigation which demonstrates that
these effects are substantial enough to make iterated learning untenable as a methodological
tool when large individual differences exist.

How do heterogeneous iterated learning chains behave?

This section outlines four simulations, each of which illustrates a different issue. Our
first example investigates regularization of a simple rule, and illustrates that learners with
stronger biases have a larger influence on language change. The second example examines
a jury decision making scenario and illustrates how miscalibrated Bayesian learners can
exhibit “groupthink” behavior. Our third example is a categorization problem that relies on
more complex psychological models, illustrating how iterated learning can distort learners’
priors when individual differences are present. The final case study presents a systematic
exploration of several different factors that might affect the behavior of a heterogeneous
iterated learning chain.

Case study 1: Who is responsible for regularization?

Do all learners have equal influence on the process of linguistic and cultural evolution?
We consider this question in the context of the emergence of regularities over time. Although
in the abstract this situation occurs in a variety of domains – categories with or without
exceptions, constructions with or without irregularities, decision strategies with or without
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variants – it arises especially often with regards to linguistic evolution: when, how, and why
do regular grammatical or morphological constructions emerge?

One possible source of heterogeneity is that some learners might have strong opinions
about a particular rule or construction, whereas others might have weak opinions. Exactly
who has which opinion might vary with the particular linguistic context and construction
involved: for instance, children may have a bias for regularization that adults do not share
(Hudson Kam & Newport, 2005), but adult second-language learners may have biases based
on transfer from their first language while children do not (Ellis, 2015). We are fairly
agnostic at this point about what such biases might be; all that matters for the present
purposes is that it is plausible that there are individual differences in the strength and
nature of at least some learning biases. Our question is what effect this might have on the
nature of the evolved language or cultural product.

To study this, consider the following iterated learning experiment. Participants are
presented with utterances in an artificial language that may incorporate a grammatical
feature (e.g., pluralization rule, case marking etc). After training, participants are asked
to produce new utterances in this language, and then these utterances are presented as the
input to the next learner in the chain. This procedure is relatively typical for linguistic
iterated learning experiments, and it corresponds to a simple Bayesian model (Ferdinand,
Kirby, & Smith, 2014; Reali & Griffiths, 2009; Smith & Wonnacott, 2010).

The model for the task can be constructed as follows. If θ denotes the probability that
the grammatical rule in question should be followed for a novel utterance in the language,
then the learner needs to estimate this unknown probability. A Bayesian analysis uses
a prior distribution P (θ) to describe the inductive biases that the participants bring to
the experiment, and a standard choice in this scenario is to assume that the prior can be
described using a Beta(a, b) distribution in which

P (θ) ∝ θa−1(1− θ)b−1

The learners with strong and weak biases can be captured by different priors. In our
simulations we formalize learners with a strong bias using a Beta(1,10) prior and learners
with a weak bias with a Beta(2,1) prior. In this scenario, the biases of the two learner
types point in different directions, though this need not be true in general. Regardless of
the biases the learner brings to the experiment, it is assumed that belief updating follows
Bayes’ rule. After completing a training session in which x of the n sentences presented to
them follow the rule, the posterior distribution P (θ |x) is given by

P (θ |x) ∝ P (x | θ)P (θ)

where P (x | θ) ∝ θx(1− θ)n−x describes the probability of observing x out of n cases satis-
fying the grammatical rule given that the true probability is θ. Under these assumptions,
the posterior over θ is a Beta(a+x, b+n−x) distribution. When asked to generate a novel
sentence for the next learner, a Bayesian learner might choose to sample a value of θ from
their posterior, and their sentences would satisfy the grammatical rule with probability θ.
More formally, the number of generated sentences y that satisfy the rule is sampled from
the posterior predictive distribution P (y|x):

P (y|x) =
∫ 1

0
P (y|θ)P (θ|x)dθ



HETEROGENOUS ITERATED LEARNING 7

This model is a standard tool when investigating regularization in iterated learning chains
(Ferdinand, Thompson, Kirby, & Smith, 2013; Reali & Griffiths, 2009). The posterior
predictive distribution supplies the transition probabilities for an iterated learning chain:
if the ith participant is presented with x out of n utterances that follow the grammatical
rule, then P (y|x) describes the probability that they will produce y out of n rule-satisfying
utterances; these are the utterances that will be presented to participant i+ 1.

It is natural to expect that the inductive biases of learners will influence the responses
that they produce in an artificial language learning experiment. This is illustrated in Fig-
ure 2, which plots the distribution over rule-consistent responses y that we would expect
to observe, as a function of two things: the number of rule-consistent training items x
plus the nature of the learner (weak or strong). The weak learners have a weak bias
to impose the grammatical rule, as illustrated by the fact the response distributions are
all shifted slightly to the right hand side of the plots: on average, these learners produce
rule-consistent responses slightly more often than they received in the input (i.e., y > x).
In contrast, the strong learners, who have a strong bias against the rule, find the rule
hard to acquire. As a consequence they tend to produce far fewer rule-consistent responses
in their output than they receive as input (i.e., y < x).2

How effectively can iterated learning methods reveal these inductive biases? To an-
swer this question we simulate the results of three different kinds of iterated learning ex-
periments. In all cases, the first person is taught 10 sentences in an artificial language, 5
of which are consistent with a grammatical rule and 5 of which are not; they then generate
10 sentences that are then used as input for the next learner; and so on for a sequence of
20 language learners. In the first experiment all learners are weak with the kind of gram-
matical rule being taught, and in the second experiment all learners are strong. In the
third experiment, half of the learners are weak and half are strong. In each case results
are aggregated across 100,000 simulated iterated learning chains.

The results are shown in Figure 3. When all learners share the same inductive biases,
an iterated learning experiment transparently reveals those biases. This is illustrated in the
left and middle panels of Figure 3. In the top left panel we see that the weak learners tend
to regularize: the proportion of rule-consistent responses rises from the initial value of 50%
towards the 67% probability that the learners expect. Similarly, the iterated learning chain
consisting purely of strong learners moves in the opposite direction, quickly converging
to only 9% of responses being consistent with the rule, again reflecting the prior bias that
these learners possess. The bottom left and bottom middle panels illustrate that, after 20
iterations, the distribution of responses accurately reflects the priors.

So far this is precisely the pattern of results described by Griffiths and Kalish (2007):
iterated learning reveals the prior. However, when we consider the iterated learning experi-
ment conducted with a mixed population (right panels of Figure 3), we observe a strikingly
different result. In this situation – where half of the learners are weak and half are strong
– the average bias in the population is to expect 38% of sentences to be rule-consistent.
Yet, as the top right panel shows, the iterated learning chain converges to a smaller num-
ber, with only 27% of responses following the rule. More importantly, as the bottom right

2One could perform the same simulation but with weak learners who have a bias against the rule and
strong learners who have a bias to learn it. In that case, the interpretation of the bias would be different
but everything else would be identical.
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Figure 2 . Illustration of the language learning scenario. Each learner is given 10 sentences as input
and asked to produce 10 novel sentences as output. Each sentence can be characterized as rule-
consistent or rule-inconsistent, with regards to some particular grammatical rule. Panel (a) shows
how a learner with weak prior bias updates their prior to a posterior distribution when the training
data consists of 5 of 10 rule-consistent sentences, and panel (b) shows the corresponding plots for
learners with a strong prior bias in the opposite direction. The resulting transition matrices for
the two learner types are plotted in panels (c) and (d). These panels plot a set of 11 histograms
showing the distribution of the number of rule-consistent responses, as a function of the number of
rule-consistent input sentences. These plots illustrate the consequences of different inductive biases.
Although both learner types tend to mirror the input they receive, the transition matrix for the
strong bias learner shows a much stronger influence of the prior.

panel reveals, the distribution of responses bears very little resemblance to the underlying
population biases. One might have hoped that, when learners bring different priors to an
iterated learning experiment, the chain would converge to a weighted average of their priors.
In this case, this weighted average would be a 50-50 mixture of the priors of weak learners
and strong learners, which is shown by the dots-and-lines. As the figure illustrates, the
iterated learning chain (histogram) does not converge to anything even remotely similar to
this mixture distribution.

Why does the iterated learning procedure fail to reveal “the prior” when the popula-
tion is heterogeneous? An answer to this question can be found by separating the responses
by learner type, shown in Figure 4. The left hand side of the plot shows the response dis-
tributions produced by weak learners in the mixed chain; they do not look at all similar to
the responses that they would have produced in a homogeneous chain. Instead of converg-
ing to their own prior bias, which would give rise to 67% rule consistent responses, their
responses are very strongly influenced by the the biases of the strong learners, and as a
result their responses are rule-consistent 36% of the time. However, this effect is not sym-
metric: the influence of the weak learners increases the number of rule-consistent responses
of the strong learners by a much smaller amount, from 9% to 17.5%. The distributional
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Figure 3 . Iterated learning works when the learners are homogeneous, but fails when they are
heterogeneous. The plots on the left show results from an iterated learning chain consisting solely
of weak learners, and the plots in the middle show the results from an iterated learning chain
consisting solely of strong learners. The plots on the right depict a mixed chain in which half
the learners have a weak bias about the general class of grammatical rules to be learned, and half
of the learners have a strong one. All chains are initialized with 5 of 10 sentences obeying the
specific rule in question. The plots in the top row show how the average number (across simulations)
of rule-consistent responses produced by the learner changes across generations. The plots in the
bottom row show the distribution of responses produced in the 20th generation (solid lines) and the
population average prior of the learners (gray bars). The iterated learning chain reveals the true
inductive biases (prior) only in the homogeneous chains (left and middle) but produces substantial
distortions when the chain is constructed from learners with different biases (right panel).
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Figure 4 . Responses in the mixed chain broken down by learner type. The weak learners produce
responses (top left panel, dotted line) that are quite different from those that they would have
produced in a homogeneous chain (top left panel, solid line). Nor does the distribution of their
responses (bottom left panel, dotted line) reflect the distribution of their priors (bottom left panel,
bars). By contrast, the strong learners produce responses that are more similar to those they
would have produced in a homogeneous chain and to their prior distribution. The weak learners
are more profoundly distorted by being in a chain with strong learners, rather than vice-versa.

effects shown in the lower panels are even more pronounced: by the final iteration of the
experiment, a strong learner can be expected to sample responses from a distribution that
is not markedly different from their prior, but the responses produced by a weak learner
are drawn from a distribution that is qualitatively different from both their prior and the
group’s average prior.

As this simple example illustrates, when individual differences exist an iterated learn-
ing procedure is not guaranteed to reveal the inductive biases of the learner in any mean-
ingful sense of the term. The reason this occurs is that the strong learners apply a very
strong inductive bias: the Beta(1,10) prior that they bring to the learning problem ensures
that these learners require a lot of evidence before they are willing (or able) to apply the
grammatical rule in question, and as a consequence data generated by a weak learner will
have minimal ability to sway such a person. The reverse does not hold: the weak learners
in this scenario adopted a Beta(2,1) prior that ensures they have a prior bias to expect a
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grammatical rule, but this bias is weak and these learners are very responsive to external
input. As a result, a weak participant makes a much larger adjustment from the prior than
does an strong one, with the consequence that the overall behavior of the mixed chain is
much more heavily driven by the group with the strongest bias.

This result is robust, perhaps also underwhelming: after all, these average responses
are different from the averaged priors but not strikingly so, and the overall proportion of
rule-consistent responses has not changed a great deal. However, consider what happens
when the vast majority of the population consists of completely unbiased learners with a
Beta(1,1) prior but 5% consists of learners with a Beta(100,1) prior that strongly favors
adopting the rule. In that situation, shown in the top row of Figure 5, the population-
level response appears far more extreme than the vast majority of learners, following the
rule almost 80% of the time (left panel). The middle and right panels show that this is
because, as previously, the less extreme Beta(1,1) learners systematically adopt the rule
far more than their prior would suggest they do. The more extreme Beta(100,1) learners
under-adopt relative to their prior, but not as much, so the population average behaviour
is distorted.3

Some readers may have noticed one apparent discrepancy between our results and
other work showing that the long-run behaviour of iterated learning chains such as these
is toward complete regularization and full adoption of a rule or pattern (Reali & Griffiths,
2009; Smith & Wonnacott, 2010). The reason we do not observe that here is that so far we
have assumed that learners sample their hypotheses from the posterior distribution rather
than picking the one with the highest posterior probability. This latter process, known as
MAP learning, has been shown to exaggerate the prior (Kirby et al., 2007).

What happens to an iterated learning chain with a mixed population of MAP learners
with a heterogeneous set of priors? The bottom row of Figure 5 explores this question
with a population identical to the top row but making the assumption that the learners
produce output by selecting the hypotheses that maximize posterior probability rather than
sampling from the posterior distribution. It is clear that the amount of distortion caused by
the tiny 5% minority of extremists has been exaggerated even further: even though only a
few have any bias towards the rule at all, it is enough to produce almost complete adoption
of the rule by all learners by the 100th iteration of the chain. This result is especially
interesting in light of previous work suggesting that iterated learning can result in full
regularization even if everyone in the population has only weak priors for regularization
(Smith & Wonnacott, 2010). Our result suggests that regularization can emerge even if
the vast majority of individuals in the population are not biased at all to regularize. More
broadly, the theoretically interesting implication of this entire case study is that as long as
there are different people in a population with different biases, it is those with the stronger
ones that have a disproportionate effect on the resulting language. Depending on the rule
or construction involved, such people might be children, adult second language learners, or

3Interestingly, the output of the iterated learning chain also does not converge to a weighted population
average in which weights correspond to strength of belief. We tested this by weighting each learner propor-
tional to the number of prior pseudo-observations; thus, a weighted mixture of a Beta(98,2) and a Beta(1,49)
would assign twice as much weight to the former than the letter. The chain slightly undershot this value.
It would be possible to calculate weights in other ways (e.g., entropy of priors, etc) but for space reasons
we omit a fuller exploration of these possibilities. In any case it is clear that the nature of the convergent
distribution is not obviously predictable.



HETEROGENOUS ITERATED LEARNING 12

●
●
●
●
●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

40
50

60
70

80
90

10
0

Mixed Chain (95% Unbiased)
Posterior Sampling

Iteration

A
ve

ra
ge

 R
es

po
ns

e

● Iterated Learning
Pop. Average Prior

●●
●
●
●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●●
●●●●

●●●
●●●

●●●●
●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

0 20 40 60 80 100

40
50

60
70

80
90

10
0

Unbiased Learners
Posterior Sampling

Iteration

A
ve

ra
ge

 R
es

po
ns

e

● Iterated Learning
Prior

●

●●●
●
●●●

●●●●
●●●

●●●
●●
●●●●●

●●●●●
●●●●●

●
●
●●●●●●●

●●●●
●●●

●●●
●●●

●●●●
●
●
●
●●
●
●
●
●
●●●●●●

●●●●●●●
●●●●●●

●
●●
●●●

●●
●●●

●

0 20 40 60 80 100

40
50

60
70

80
90

10
0

Very Biased Learners
Posterior Sampling

Iteration

A
ve

ra
ge

 R
es

po
ns

e

● Iterated Learning
Prior

●
●
●
●
●
●
●
●
●●
●●
●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●

0 20 40 60 80 100

40
50

60
70

80
90

10
0

Mixed Chain (95% Unbiased)
MAP Hypothesis

Iteration

A
ve

ra
ge

 R
es

po
ns

e

● Iterated Learning
Pop. Average Prior

●●
●
●
●
●
●
●
●
●
●
●●
●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●●
●●●

●●●
●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●

0 20 40 60 80 100

40
50

60
70

80
90

10
0

Unbiased Learners
MAP Hypothesis

Iteration

A
ve

ra
ge

 R
es

po
ns

e

● Iterated Learning
Prior

●

●
●●
●●
●
●●
●
●
●
●●●

●●●
●●
●
●
●●
●●
●●●●

●●
●●●

●●●●
●●●

●●●
●●
●●
●●●●

●●●●●●
●●●

●●●●●●●●●
●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●●●

0 20 40 60 80 100

40
50

60
70

80
90

10
0

Very Biased Learners
MAP Hypothesis

Iteration

A
ve

ra
ge

 R
es

po
ns

e

● Iterated Learning
Prior

Figure 5 . Linguistic rule adoption when the population of learners is highly uneven. In this
scenario, 95% of learners are unbiased and 5% have a very strong prior to adopt the rule. The top
row assumes that learners sample their hypotheses from the posterior distribution, while the bottom
row assumes they pick the one with the highest posterior probability (MAP learning). The left
column shows the behaviour of this mixed chain: even though 95% of the learners are unbiased, the
chain ends up producing the rule about 80% of the time when learners sample from the posterior
(top left), and almost complete regularization when learners apply MAP learning (bottom left). This
occurs because the responses of the unbiased learners (middle column) are significantly distorted
from their priors, as a result of occasionally receiving input from the biased learners (right panel),
who are not distorted nearly as much.
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individuals from a culturally dominant subgroup.
How much do these results stem from the particular details of our formalization?

To address this question, the next case study considers another kind of heterogeneous
population in which people differ in the degree to which they depend on their own reasoning
rather than relying on others. This technically corresponds to heterogeneity in likelihoods
rather than priors, but as we shall see, the effects are similar: the resulting distribution is
disproportionately shaped by some agents over others.

Case study 2: Phrenology, forensics and the overconfident crowd

Communities of learners often arrive at beliefs that seem entirely unfounded in evi-
dence Examples include the widespread belief in phrenology in the 19th century (Faigman,
2007), disproportionate trust in unreliable forensic methods (PCAST, 2016), beliefs in con-
spiracy theories (Goertzel, 1994), and “groupthink” that plagues decision making processes
(Janis, 1982). How do these false beliefs arise? Do they necessarily reflect an overly-
credulous form of reasoning that all humans are equally susceptible to, or can an entire
community of mostly well-calibrated learners be misled by a small number of highly biased
learners?

To illustrate how this might work, consider the following scenario in which a jury
of 12 people begin their deliberations with a straw poll. A notepad is passed around the
room, with each person writing down whether they would decide in favour of the plaintiff or
the defendant before removing their sheet of paper and passing the pad to the next juror.
Unfortunately, it turns out that paper on the notepad is rather thin, and each juror can
clearly read the indentations left by the previous person. Therefore, the straw poll forms
an iterated learning chain in which each juror receives input from the previous one.

Clearly, the flawed notepad creates a situation that violates the independence of the
juror votes in the straw poll, but does it distort the overall results? To answer this, we
consider the behavior of a simple Bayesian juror. The juror considers two hypotheses,
namely that the evidence favors the plaintiff (e = 1) and that it favors the defendant
(e = 0). On the basis of their personal evaluation of the evidence at trial, the juror believes
that the outcome should favor the plaintiff with probability θ. This belief sets the juror’s
prior belief, P (e = 1) = θ, a belief that is updated when the notepad is passed to them and
the vote v of the preceding juror is inadvertently revealed. The juror unconsciously assigns
a reliability r value to the previous person, such that P (v = 1|e = 1) = P (v = 0|e = 0) = r,
and updates their beliefs accordingly. If the preceding juror voted for the plaintiff, the
current juror’s posterior degree of belief that the verdict should favor the plaintiff becomes

P (e = 1 | v = 1) = rθ

rθ + (1− r)(1− θ) (1)

whereas if the earlier vote favored the defendant, this posterior probability becomes

P (e = 1 | v = 0) = (1− r)θ
(1− r)θ + r(1− θ) (2)

For simplicity, we assume that the juror generates their own vote probabilistically, by sam-
pling from the posterior distribution: if the juror’s posterior indicates that there is a 95%
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probability that the evidence favors the plaintiff, then they vote in favor of the plaintiff with
probability 0.95. As these equations illustrate, when r = 0.5 the current juror completely
ignores the vote provided by the previous one and the posterior probability is identical to
the prior. This arises naturally when the current juror is confident that their existing be-
liefs incorporate all relevant information about the case, and as such the opinions of other
jurors can have no influence upon their own beliefs. We refer to such a juror as a goat –
someone who forms their own view and is not led to conclusions by the opinions of others.
In contrast, suppose the juror is underconfident about their beliefs, perhaps suspecting that
other jurors have access to different information. Such a juror will set r > 0.5, because
they attribute evidentiary value to the opinions of others, and we refer to this kind of a
juror as a sheep because they are more likely to adjust their vote to agree with the votes
of others. Note that sheep in this case are mis-calibrated: since the juror next to them
saw no different evidence than they did, by taking their opinion into account they are treat-
ing non-independent data (the evidence in the trial and the neighbouring juror’s belief) as
independent and overweighting that evidence. What happens in this case?

We consider three scenarios for how this straw poll may play out. In the first scenario
all jurors are goats who set r = 0.5 and have a modest opinion in favor of the defendant
(θ = 0.4). In the second scenario all jurors are sheep who set r = 0.9 and have a modest
opinion favoring the plaintiff (θ = 0.6). Finally we consider a situation where half of
the jurors are sheep and the other half are goats. To illustrate what happens in these
situations we simulated each scenario 100,000 times. The results are plotted in Figure 6.
Not surprisingly, because the goat jurors ignore the input and generate responses directly
from their own prior beliefs, the “chain” starts at their prior (on average, 40% of jurors vote
for the plaintiff) and the total number of votes in favor of the plaintiff follows a binomial
distribution.

What should we expect to see if all jurors are sheep? One reading of the literature
suggests that, since iterated learning chains of Bayesian learners converge to the prior, and
since the first sheep samples from their own prior, we should see a result not dissimilar
to the one we see for goats. That is – while we might expect to see non-independence
among successive jurors – we should find that on average a sheep juror should vote for the
plaintiff 60% of the time, in accordance with their priors. However, as the middle column to
Figure 6 illustrates, this is emphatically not what happens. The first juror does indeed vote
in accordance with their priors, but by the time the 12th juror is polled, the probability of
voting for the plaintiff has risen to about 67%. Moreover, it is very simple to prove that
this is not a simulation error. A pure iterated learning chain of sheep does not converge
to the prior in any meaningful sense. The long-run probability of a sheep voting for the
plaintiff is in fact 2/3. Let p = P (vi = 1|vi−1 = 0) denote the probability that the ith juror
in the chain votes for the plaintiff given that the previous juror voted for the defendant,
and similarly let d = P (vi = 0|vi−1 = 1) denote the probability that the ith juror switches
the other direction. The transition matrix for the strawpoll is thus

T =
[

1− p p
d 1− d

]

A Markov with this transition matrix converges to a stationary distribution π in which the
(marginal) probability of voting for the defendant and plaintiff is proportional to d and p
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Figure 6 . The results of the hypothetical jury straw poll. The top row plots the probability
that each juror votes for the plaintiff, as a function of their position in the chain (the dashed line
plots the population average prior in each case), and the bottom row plots the distribution (across
simulations) of the total number of votes for the plaintiff. Plots on the left show the results if all
jurors are goats, the middle column shows the results if all jurors are sheep, and the results on
the right show the outcome if half of the jurors are goats and the other half are sheep.

respectively. To verify this, note that

πT ∝ [d, p]
[

1− p p
d 1− d

]
= [d(1− p) + pd, dp+ p(1− d)]
= [d, p]
∝ π

It is straightforward to use Equations 1 and 2 to show that for a sheep juror, the probability
of switching the vote from the plaintiff to the defendant is d = (.1 × .4)/(.1 × .4 + .9 ×
.6) = .069, and similarly the probability of switching the vote towards the plaintiff is
p = (.1 × .6)/(.1 × .6 + .9 × .4) = .142. Accordingly, in the long run, a chain of sheep
converges to a 67% probability of voting for the plaintiff even though each individual sheep
only assigns a 60% prior probability to the plaintiff.
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To understand why this result occurs – in seeming violation of the convergence proofs
offered by Griffiths and Kalish (2007) – note that the distribution of sheep votes in the
lower middle panel of Figure 6 is bimodal. In almost all cases sheep vote as a block: the
most likely outcome is that all 12 jurors vote for the plaintiff, but should that not occur
the second most plausible outcome is all 12 jurors voting for the defendant. Ultimately this
occurs because the sheep jurors are fundamentally miscalibrated. Because the sheep juror
assigns evidentiary value to the opinions of other jurors – even though those other jurors
have observed the exact same evidence at trial – the strength of their posterior belief in the
plaintiff’s case is exaggerated. In effect they have “double counted” the evidence at trial:
the evidence at trial is used to form the current juror’s prior opinion, but because that same
evidence also influenced the vote of the previous juror, it can also exert an indirect influence
on the current juror. As a consequence, an iterated learning chain constructed solely from
sheep jurors does not converge to the prior.

Next, consider what happens when sheep and goats are mixed together in equal
proportions, as depicted in the right hand column of Figure 6. The sheep assign prior
probability of 0.6 to the plaintiff, whereas the goats assign prior 0.4, so the population
average prior is 0.5. Alternatively, if we consider the behavior of the two homogeneous
iterated learning chains, the sheep on their own would be expected to converge to 0.67 and
the goats would converge to 0.4, so the average of these two long run probabilities is 0.54.
It would not be unreasonable – if one did not know the details – to expect that an iterated
learning chain comprised of an equal mixture of these two learner types should converge to
a situation in which the average probability of voting for the plaintiff should lie somewhere
between 50% and 54%. Unsurprisingly, of course, it does nothing of the sort. Because
the goats are insensitive to the opinions of others whereas sheep are highly influenced by
others, the goats dominate the behavior of the mixed chain, and the long run behavior
converges to a 43% probability of voting the plaintiff. This is shown more clearly in Figure 7
which shows exactly this asymmetry: the sheep “learn” to mimic goats but the goats
make no such accommodation.

Although this simulation describes a very simple situation, it highlights two important
things about how iterated learning scenarios can play out. Firstly, the sheep-only scenario
illustrates that even in the homogeneous case where all learners are identical to each other,
it is possible for an iterated learning chain to converge to something other than the prior.
This result mirrors previous work by Smith (2009) showing that convergence can be affected
when learner’s likelihood function is at odds with the true generative process. Relatedly,
it complements work by Perfors and Navarro (2014) which showed that the convergence of
iterated learning chains is affected when there is an additional input to the chain (i.e., the
world passes new information to learners). In the sheep chain we find that convergence
is influenced when learners mistakenly believe there is additional information being passed
into the chain. This mistaken belief drives a kind of groupthink, in which a collection of
individually underconfident learners becomes overconfident as a group. That is, because
each sheep has insufficient confidence in their own priors, an iterated learning chain of
sheep jurors becomes overly confident. In essence, this result provides a mechanism for
a very strong belief to emerge in a fashion that is not driven by the external world, and
moreover that it is fundamentally caused by the underconfidence of individual learners.

The second point to take away from this simulation is that the behavior of a hetero-
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Figure 7 . The behavior of sheep and goats when mixed together in the jury scenario. As one
might expect, the behavior of goats is entirely unchanged by the presence of sheep, but the sheep
shift their votes to more closely match the goats.

geneous chain is not easily predicted by considering the behavior of its constituent homo-
geneous chains, or the priors of individual learners. The mixed chain of sheep and goats
is much more strongly driven by the goats, even though a homogeneous chain of goats
produces a much less extreme outcome than the a chain of pure sheep. People who are
more willing (or able) to learn from the input of others will have less influence on an iterated
learning chain than people who do not adjust their beliefs. This asymmetry is shown very
clearly in the sheep-goats scenario here, but it is the same phenomenon that drives the
asymmetry between the weak and strong learners in the first case study.

Case study 3: Categorization

The examples considered to this point have focused on Bayesian models and situations
in which where there are two qualitatively different groups in the population. Our third
case study expands the focus, and considers a situation involving non-Bayesian models and
a more general notion of individual differences. The problem we focus on is categorization,
and we use a standard exemplar model (Nosofsky, 1986) of classification to highlight how
iterated learning plays out in this setting when the population is heterogeneous.

We consider a learning problem in which stimuli vary along a single stimulus dimen-
sion with 8 exemplars spaced evenly across the range (located at x = 1, . . . , 8). Each of
these items can be assigned to one of two categories (A or B). We are interested in exploring
the presence of two different kinds of inductive biases, one pertaining to category size and
another pertaining to category coherence. The “category size” bias refers to whether the
learner has an a priori preference to divide the stimuli into two equally sized categories
(e.g., a 4-4 split) or prefers to divide them in a more uneven fashion (e.g., a 7-1 split). The
“category coherence” bias refers to the extent to which the learner prefers to group similar
(i.e., nearby) items into the same category.
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Figure 8 . In case study 3, we consider a categorization case with eight items from two categories
that differ from one another along one dimension (top panel). We imagine a situation in which an
experimenter might want to use the iterated learning task to infer to what extent people have a bias
to assume that categories are coherent (left panel) rather than incoherent (right panel).

An iterated learning design can be used to explore these biases in a relatively straight-
forward way, as illustrated in Figure 8. During category learning, each learner is shown
training items that consist of four exemplars and their category labels, selected randomly
subject to the constraint that there must be one exemplar of each category in the training
set. During the test phase the learner must classify the remaining four exemplars. An
iterated learning chain is then constructed in an obvious way, by using a random subset of
responses from one learner as the training data for the next, subject to the constraint that
the learner must be shown at least one example of each category. To simulate the behavior
of the chain, we assume each participant can be modeled using the Generalized Context
Model (GCM) of Nosofsky (1986). According to the GCM, the probability of assigning
a test item located at y to category A given training items x = (x1, . . . , xn) with labels
l = (l1, . . . , ln) is proportional to the sum of the similarities between the test item and the
known members of category A:

P (y ∈ A |x, l) =
∑

i|li=A S(xi, y)∑
i|li=A S(xi, y) +

∑
i|li=B S(xi, y)

Exemplar similarity is an exponentially decaying function of distance in the psychological
space:

S(x, y) = exp(−λ|x− y|)

The model has one free parameter: the specificity parameter λ, which describes how rapidly
similarity decays as a function of distance. When λ is large, similarity falls away very quickly
with distance, and when λ is small similarity diminishes much more slowly. Although the
GCM is not usually framed as a Bayesian model (but see Nosofsky, 1991) it nevertheless
imposes inductive biases that ensure that some categorization schemes are a priori more
“natural” than others (Pothos & Bailey, 2009). Moreover, these biases are dependent on the
value of the specificity parameter λ, a fact that becomes very apparent when we simulate
the behavior of (homogeneous) iterated learning chains using GCM learners.

To illustrate this, consider the category coherence bias. Let AAAABBBB denote the
category structure in which the four items located at x = 1, 2, 3, 4 belong to category A,
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and the other items belong to category B (left panel in Figure 8). The category structure
AAAABBBB has the maximum possible coherence, while the maximally incoherent cate-
gory structure is one in which the labels alternate ABABABAB. A simple way of measuring
the coherence of a categorization scheme is to count the number of times a pair of adjacent
items are assigned to the same category. There are no instances of this occurring for the
ABABABAB structure, so it has coherence zero. For AAAABBBB, there are six such in-
stances. Using this measure, it is possible to obtain a very clear picture of how the GCM
imposes a coherence bias within an iterated learning design. The left panel of Figure 9
shows what happens in an iterated learning chain when all participants have the same λ.
The first learner is shown a random subset of four items and asked to label the other four;
those responses were used to generate the input for the next learner. At the beginning of
all chains, when the category assignments are random, the average coherence is the same
regardless of λ. When similarity decays slowly (λ = 0.1) the GCM does not impose a strong
coherence bias on the input, and the stationary distribution of the chain reflects that: the
categories produced by the iterated learning chain are only barely more coherent than ran-
dom assignment. In contrast, when we set λ = 10, corresponding to a narrow generalization
gradient, the GCM always assigns items to the same category as the nearest exemplar. This
creates a strong pressure towards maximally coherent category structures, and the iterated
learning chain converges to a coherence value of six.

Of course, the assumption that all of the learners have the same prior seems unlikely
to apply to humans. With that in mind we ran a second simulated iterated learning study,
shown in the right panel of Figure 9. This time we allowed learners to vary in their λ values
(sampling uniformly at random from the same three λ values of 0.1, 1, and 10). In the
figure, the gray dotted line reflects the average of this heterogeneous population of learners
over the course of iterated learning. It is apparent that it is lower than the average of the
learners when they are in homogeneous chains (on the left). Overall, however, when we
compare the left and right panels to one another the impression is that the differences are
modest. All the learners become somewhat more similar to one another, with the categories
produced by λ = 10 learners becoming slightly less coherent and the curves for the λ = 0.1
learners becoming slightly more coherent; but the average coherence does not change by
much. Based on this figure, one might conclude that the heterogeneity of the population
has done very little to distort the categorization schemes produced by the various different
learners. Unfortunately, this conclusion would be incorrect, as becomes apparent when we
consider a different inductive bias.

Categorization is a complex enough task that even when stimuli vary on only a single
dimension there are many different ways of describing the inductive biases that a learner
possesses. A preference for coherent categories is one kind of bias that a learner might
express, but one might be just as interested in exploring the extent to which learners prefer
categories to be of similar size. For instance, the category structures AAAABBBB and
ABABABAB have different degrees of coherence, but both schemes divide the exemplars
into two equal-sized categories. By contrast, the categories ABBBBBBB and AAAABBBB
are equally coherent, but the first one divides the exemplars in a 7-1 split and the second
uses a 4-4 split. A preference for any of these is not built into the GCM directly, but an
effective preference falls naturally out of the model as a byproduct of variation in λ. We can
operationalize this by counting how many exemplars are assigned to the smaller category,
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Figure 9 . Category coherence: Performance of iterated learning chains in a supervised learning
categorization task. The y axis shows category coherence as reflected in the number of adjacent
items in the same category: higher numbers reflect more coherence. Left panel: Category coherence
assuming all participants share the same prior (λ). Here there are three chains each reflecting one
of the three λ values. As λ grows higher, iterated learning produces more coherent categories. The
gray dotted line reflects the average of the three chains. Right panel: When there are individual
differences within participants, the overall average coherence of the iterated learning chain (gray
dotted line) is lower than the average coherence of the three participant types taken separately
(gray dotted line in left panel). This is because the behavior of learners with larger λ is pulled more
towards the behavior of learners with smaller λ, rather than vice-versa. All results reflect 100,000
simulations for each separate chain.

yielding a measure that produces value 1 when category sizes are most uneven and value 4
when they are exactly even.

Figure 10 shows the category size measures for the three separate homogeneous chains
(left) and the single heterogeneous chain (right) run previously. The homogeneous chains
reveal that the GCM is biased to prefer unevenly sized categories. However, this bias is
weak when the model generalizes narrowly (λ = 10), and large when the model generalizes
widely (λ = 0.1). Unfortunately, almost none of this differentiation is evident when we look
at the heterogeneous chains: the overall average is substantially different from when the
three learner types were taken separately, and there are almost no individual differences to
be found, with all three learner types producing similar responses. In this instance, mixing
learners with different biases into the iterated learning has almost completely erased their
differences.

The explanation for why this occurs is the same as before. Here, the bias for unevenly-
sized categories is the stronger one. This means that a learner with a stronger bias for
unevenness (with λ = 0.1) that was given equally-sized categories as input would tend
to create output that was more uneven. Critically, however, a learner with less of a bias
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Figure 10 . Category size: Performance of iterated learning chains in a supervised learning cate-
gorization task. The y axis shows the preference for skewed categories, as reflected in the number
of items in the smaller category: 1 indicates the maximum degree of skew, while 4 means both
categories are equally sized. Left panel: Relative size of the categories assuming all participants
share the same prior (λ). Here there are three chains each reflecting one of three λ values. As λ
grows higher, iterated learning produces more equally-sized categories. The gray dotted line reflects
the average of the three chains. Right panel: When there are individual differences within par-
ticipants, the overall average category skew in the iterated learning chain is larger (i.e., the size of
the smallest category is smaller) than the average of the three participant types taken separately
(gray dotted line in left panel). As before, this is because the behavior of learners with larger λ
is pulled more towards the behavior of learners with smaller λ, rather than vice-versa. All results
reflect 100,000 simulations for each separate chain.

for unevenness (with λ = 1) also has less strong of a preference in general. They would
therefore tend to preserve any unevenness they are given. The end result is that unevenly-
sized categories are much more common than a simple averaging of the preferences of the
learners would suggest. As in the previous two case studies, it is the asymmetrical response
between learners with different biases that is critical.

Case study 4: A systematic exploration

Each of the three case studies presents an example in which heterogeneity among
learners introduces systematic biases to an iterated learning chain. At a qualitative level
we see two distinct effects: (a) iterated learning tends to erase individual differences and
(b) learners that have strong inductive biases have greater influence on the chain. In this
section we present a more systematic exploration of the factors that shape these two effects.

The scenario we consider is deliberately generic. In it, each learner is asked to produce
one or more continuous-valued judgments xi. These judgments are assumed to reflect some
latent belief bi possessed by the learner plus some normally distributed error (assumed
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to have mean 0 and standard deviation 1). Before receiving any input, the learner is
uncertain what to believe about the task, captured by the prior bi ∼ Normal(µi, σi). When
shown the judgments made by the previous learner xi−1 the learner arrives at the posterior
distribution P (bi|xi−1), samples their belief bi from this distribution, and then generates
their own judgment(s) xi accordingly.4 This model allows a clear separation between the
“value” of the learner’s inductive bias (i.e., µ) and the “strength” of that inductive bias
(i.e., 1/σ). Using this model we consider heterogeneity in two different scenarios.

Discrete groups. Mirroring the set up in case studies 1 and 2, we first consider the
situation where there are two qualitatively distinct groups of people in the iterated learning
chain. The first group is always assumed to have the same direction of prior bias (given by
setting µ1 = 0) and strength of prior bias (given by σ1 = 1). We then systematically vary
the properties of the second group with the goal of fully characterizing how the stationary
distribution of the iterated learning chain depends on a variety of factors. These factors
include: the strength of the bias of group two relative to group one (manipulated by varying
σ2); the dissimilarity in beliefs across groups (manipulated by varying µ2); the bottleneck
(manipulated by varying the amount of data generated by each learner n); and the relative
proportion p of people in each of the two groups. We set default values of µ2 = 1, σ2 = 1/3,
n = 3, and p = 0.5, and then varied each parameter separately, running 5000 iterated
learning chains at every parameter value, reading off the state of the chain after 50 iterations.
We recorded the actual hypothesis (i.e., the latent belief bi) sampled by each simulated
participant, and compared the average belief elicited via iterated learning to the relevant
priors.

As Figure 11 shows, the results of the simulation are mostly as one might predict.
When the strength of the inductive bias in group 2 is increased (left to right in panel a),
all learners in the chain express beliefs that are closer to the group 2 bias. Increasing
the separation between the groups (panel b) induces a proportional change in everyone’s
beliefs. Increasing the proportion of people in group 2 shifts the average belief of both
groups towards the group 2 bias (panel c). The most interesting finding is the effect of
widening the bottleneck (panel d). As one would expect, the more information exchanged
between learners, the stronger the homogenizing effect (the curves converge). However,
the effect is asymmetric: the strong bias learners (group 2) are only very weakly affected,
whereas the weak bias learners (group 1) are greatly affected. The wider the bottleneck,
the more learners with strong biases dominate over learners with weak biases.

Continuous variation. Extending the set up in case study 3, we also consider a
situation in which every learner in the chain has their own idiosyncratic mean µi and stan-
dard deviation σi, sampled randomly from some population distribution. For the population
distribution over learner bias µi we consider two possibilities, a symmetric distribution in
which the learner biases are normally distributed around 0, and an asymmetric distribution
in which the biases have mean 0 but are positively skewed. For simplicity, we assume that
the strength of belief σi is a fixed function of the value of the bias µi, and consider three pos-
sibilities for how the strength and value of an inductive bias might be related. In the equal
strength condition all learners have the same strength of belief σ, in the confident extremes

4As this is a conjugate prior, the posterior distribution P (bi|xi−1) is also a normal distribution, with
mean (σ−2

0 + nσ−2)−1 and variance (σ−2
0 + nσ−2)−1(µσ−2

0 + (
∑

xi−1)σ−2), where σ2
0 = 1 is the variance of

the measurement error.
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Figure 11 . A systematic exploration of four factors that affect the behavior of heterogeneous
iterated learning chains, in situations where there are two discrete groups of participant in which
group 2 is generally more strongly biased. In each panel the solid lines plot the average belief b
expressed by a member of each group elicited via an iterated learning chain (gray = group 1, black
= group 2), and the dotted lines show the average belief that would be expected if the judgments
were sampled from the relevant prior. The population shifts towards the group 2 belief as the
strength of the bias in group 2 is increased (panel a), as there is more separation between groups
(panel b), as group 2 makes up more proportion of the population (panel c), and as bottleneck size
increases (panel d).

condition the learners with the most extreme biases also have the strongest confidence, and
in the confident center condition the learners with the most moderate beliefs have the great-
est confidence. We considered all six possible combinations of these two factors, aggregating
over 10000 iterated learning chains in each case. For simplicity, we assumed that only a
single observation x is generated by each learner in the chain, but reduced variability in
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responses from 1 to 0.1 to ensure that this one response would be considered informative
to most learners in the chain.

The results of this simulation are shown in Figure 12. In every case, we observe the
homogenizing effect that the iterated learning procedure has on a heterogeneous population.
The standard deviation of the marginal distribution of beliefs (i.e., b) expressed in the
iterated learning chain is always lower than the marginal prior over b taken across the
entire population. This effect seems to be slightly attenuated in the confident extremes
condition (panels a and d), but not completely eliminated. Interestingly, in five of the six
cases there are minmal effects on the average belief expressed by learners: the mean value
of b elicited by the iterated learning chain is the same as in the prior. However, this is not
universally true. The notable exception, shown in panel d, is when the population beliefs are
asymmetric and extreme beliefs are the most strongly held. When this situation arises, the
confident extremists on the right hand side of the distribution have a very strong effect on
the centrists (who do not hold any strong beliefs and are easily swayed). However, because
the population is asymmetric there is no counterbalancing group of confident extremists
on the left the distribution. Consequently, in this situation the iterated learning procedure
induces a quite substantial shift in the mean expressed beliefs relative to the true priors
held by learners, with the entire distribution shifting to the right. In this situation, the
average belief elicited by an iterated learning procedure can be substantially different to
the average belief that would be elicited if each learner sampled from their own prior.

Summary

Our examples all display essentially the same pattern. When all learners bring the
same inductive bias to the problem, iterated learning behaves exactly in the way one might
expect. Consistent with Griffiths and Kalish (2007), when all learners are Bayesian reasoners
with identical priors and correctly specified likelihoods, the iterated learning procedure
reveals those priors, while for a non-Bayesian model an analogous quantity expressing some
sensible notion of preference is uncovered. However, when learners bring different biases
to the problem there is no guarantee that the responses of any one participant genuinely
reflects their prior biases, nor is there any guarantee that the average responses reflect the
average bias in the population.

This behavior appeared in all four of the case studies we explored. In the regulariza-
tion example there were systematic distortions to the prior in both groups of participants
when they were mixed into the same chain, along with systematic shifts in the mean re-
sponse that overweighted those learners with the strongest biases. In the jury decision
making example we were able to derive the stationary distribution of the iterated learning
chain and show that it did not reveal the prior in any transparent fashion. In the cate-
gorization example we saw that the effects of heterogeneity are themselves heterogeneous:
some inductive biases (like category coherence) were not strongly affected, whereas other
inductive biases in the same task (like category size) were very heavily distorted by the
presence of individual differences. In our final example, we see that these effects are sys-
tematic, become more severe as the information bottleneck widens, and can be observed
regardless of whether individual differences are discrete or continuous.

These results are the consequence of any intergenerational information transmission
process that operates where some learners hold beliefs that are more extreme than others.
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Figure 12 . Systematic exploration of the behavior of heterogeneous iterated learning chains when
individual differences are continuous. In the top row, individual differences are normally distributed
(symmetric condition), whereas in the bottom row there is a positive skew (asymmetric condition).
In the middle column, all learners have the same strength of bias no matter where their belief falls
on the scale (equal strength), whereas on the left it is the learners on the tails of the distribution
that have the strongest biases (confident extremes), and on the right the strongest biases occur in
the middle of the distribution (confident center). In each panel, the solid plots depict the marginal
prior distribution over the latent belief b taken across the entire population, whereas the shaded
plots show the corresponding marginal distribution over the beliefs b elicited by an iterated learning
procedure. The inset panels indicate which distribution condition (symmetric or asymmetric) and
which bias condition (confident extremes, equal strength or confident center) is depicted, and the
text annotations indicate the mean and standard deviation for each of the marginal distributions
shown. It is evident that in all cases iterated learning distorts the underlying shape of population
variation, and when the population is asymmetric and the extremes are more confident (panel d) it
also converges to a different mean.
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The central reason for this result is that the biases and knowledge possessed by one learner
influences the learning and output of the next. Therefore, if different learners respond
asymmetrically to the output, then their pooled output will not be reflective just of their
own biases. Rather, it will be some amalgam of the two that weights the most biased
learners the most heavily. Critically, it is not necessarily reflective of the “pure” inductive
biases possessed by anyone, either individually or in aggregate.

In the final section we empirically demonstrate that this effect has implications for
using iterated learning experiments to infer people’s biases. We present an experiment in
which we constructed iterated learning chains from the responses of two distinct populations
of human learners. As our simulations predicted, the output of the chains was heavily
shaped by those with the more extreme biases. The result is a chain that does not reflect
the average of all of the learners and also distorts the responses of each learner type taken
separately.

Experiment

Overview

The purpose of this experiment is to explore, using real human data, whether chains
constructed out of heterogeneous populations fail to converge to the prior as our simulations
would predict. Our procedure was inspired by the “ask a friend” option used in a number
of game shows, and loosely mirrors the structure of the jury decision making scenario in our
second case study. In the experimental scenario, participants are asked to answer a question
about which they (may) have some preexisting knowledge. However, they are also given a
recommendation from another person that they can rely upon if they choose. The learner’s
task is to integrate their prior knowledge with the new information to arrive at a decision.
Since the intent of the study is to capture the biases and responses of people who we already
know have very different priors, we chose to ask questions about Australian politics to two
groups of people: Australians and Americans. Similar to Ferdinand et al. (2013), rather than
running iterated learning experiments directly we then constructed iterated learning chains
from those biases and priors, systematically manipulating the proportion of Americans
and Australians in each chain. This procedure constructs chains that are indistinguishable
from those gathered through direct experimentation, because the response any participant
depends only on the information they are prompted with (the advice, in our experiment),
and not on the order in which those events occurred. Our question was whether the output
of the iterated learning chains with mixed participants matched the separately-estimated
priors.

The scenario

In our experiments, people were asked to answer a question about Australian politics
based on a combination of their own knowledge and the input of one other person, which
they can weight as they choose. Formally the problem is similar to the jury decision making
problem, and can be modeled in a similar way. Each learner is assumed to have some sub-
jective beliefs from which a prior distribution over the outcomes P (o) can be constructed:
Americans may recognize the names of one or two Australian politicians only, while Aus-
tralians may have much more nuanced knowledge. They also have some confidence in their
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Figure 13 . A simple Bayesian model for the advice taking problem. The left panel plots a sub-
jective probability distribution over options A-D – the prior. The middle panel plots the posterior
probability over these options conditional on each possible piece of advice (darker = more probable),
for a learner who believes that the advisor is correct with probability 0.3 (only slightly above chance)
and therefore relies primarily on their own beliefs – roughly analogous to the goats in case study
2. The right panel plots the same results for a situation in which the learner believes the advisor is
correct with probability 0.9, more or less consistent with the sheep jurors in case study 2.

own beliefs relative to the advisor: most Americans may realize that they don’t know much
about Australian politics, while Australians may differ more widely in their confidence.

To provide a simple model for this task, we consider a modest extension of the
Bayesian model used to specify the sheep and goat learners in our second case study.
As before, the learner assigns some degree of reliability to the advisor, and the extent of
the learner’s belief revision will depend on this reliability. Specifically, the model that the
advisor provides the correct response with probability r and chooses randomly among the
remaining n − 1 options with probability 1 − r. The larger the value of r, the more likely
the participant is to rely on the advisor. In this model, the posterior probability P (o|a),
over outcomes o given advice a, is

P (o|a) = P (a|o)P (o)∑
o′ P (a|o′)P (o′)

where the likelihood P (a|o) equals r if a = o and (1 − r)/(n − 1) otherwise. Figure 13
illustrates the role of confidence in the advisor for a situation with four different options
(A-D). If a learner with the prior beliefs about options A-D depicted in the left hand panel
is not very confident in the advisor, their responses will more closely match their prior
beliefs, as in the middle panel. If, on the other hand, they are confident that the advice is
correct they are likely to follow it, as in the right panel.

As with the previous examples, the iterated learning method implies that if everyone
shares the same prior P (o) and samples responses from the posterior P (o|a), the long run
behavior of an iterated learning chain should reflect the prior. However, the analysis in this
paper suggests that when individual differences are present, we should not expect the result
to adequately reflect individual priors. Specifically, we should expect to see systematic
distortions in which the responses of individual subjects are shrunk towards the beliefs of
other participants, with the participants who are more like the goats (i.e., unwilling to



HETEROGENOUS ITERATED LEARNING 28

change their beliefs based on the previous person in the chain) having a stronger influence
on the overall chain.

In order to investigate the extent to which this might occur in practice, our experiment
is designed to elicit priors and responses in two different ways. In the direct elicitation
condition we simply ask people to report their priors P (o); this allows us to produce plots
similar to the left panel of Figure 13. In the advice taking condition we present partic-
ipants with a specific piece of advice and ask them to make a decision; this allows us to
produce a “transition matrix” analogous to those shown in the middle and right panels of
Figure 13. This approach to studying cultural transmission was previously used by Ferdi-
nand et al. (2013). By recruiting participants with different levels of knowledge about a
topic, we can control the extent to which individual differences are present in the sample.
We then use this to investigate the behavior of iterated learning chains in practice.

Method

Participants. The experiment collected data from two populations expected to
possess different inductive biases, workers on Amazon Mechanical Turk (MTurk) and un-
dergraduate students at UNSW in Sydney, Australia. MTurk workers were paid US$0.85
for 5 minutes, whereas the UNSW students were a self-selected sample who participated for
course credit. Ten MTurk participants were excluded as they were not located in the US.

Two versions of the task were presented. A total of 320 participants (196 on MTurk,
124 at UNSW) completed the advice taking task and an additional 80 participants (38
MTurk, 42 UNSW) completed the direct elicitation task. Demographics for the ad-
vice taking task were as follows. The MTurk sample was 64% male, ranging in age from
18 to 67 (mean: 36.6), while the UNSW sample was 23% male, ranging in age from 17 to 49
(mean: 19.6). In the direct elicitation task, the MTurk sample was 76% male, ranging
in age from 18 to 67 (mean: 33.7). The UNSW sample was 14% male, 2% other, and the
rest were female, with an age range of 17 to 34 (mean: 18.9). For simplicity, we henceforth
refer to the MTurk sample as Americans and the UNSW sample as Australians.

Procedure: advice taking. The task was completed via a Qualtrics survey with
two items. One pertained to the NFL Draft and is not included here for space reasons.5 The
other item pertained to the 2016 Australian election, which had not occurred at the time
of the experiment. It asked people to guess who would be the Australian Prime Minister
after the election, presenting four options to choose from: Malcolm Turnbull, Bill Shorten,
John Howard and Gordon Brown. Two of the options were high-familiarity lures: as retired
former Prime Ministers of Australia and the UK respectively, neither John Howard nor
Gordon Brown were available as candidates in the election. As the leaders of the two major
Australian political parties, Malcolm Turnbull and Bill Shorten were the only two plausible
choices. These facts would be obvious to the vast majority of Australians, but represent
obscure knowledge for most American citizens.

The questionnaire was designed in a format that provides input from other agents.
People were presented with “advice” from a friend recommending that they select one of the

5Its results are consistent with the rest of the paper, demonstrating that an iterated learning chain
composed of people with distinct priors does not converge to an average of those priors, and systematically
distorts the behavior of the individuals in the chain.
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four options (chosen randomly from the four possibilities). The advisor was described as
very knowledgeable about the subject matter, as somebody who follows Australian politics
extremely closely. However, they were also implied to be potentially unreliable (because
they have been consuming alcohol). Presenting the advice in this format was deliberate, as it
allows a genuinely knowledgeable participant to explain why their supposedly knowledgeable
friend is giving foolish advice (e.g., they’re drunk and so are predicting that John Howard
will make a spectacular return to Australian politics). It also allows the freedom for a
participant to rely on the advice (e.g., thinking, okay, they’ve been drinking but they
probably still know the answer). The exact wording of the question was as follows:

Imagine that you are at your local bar with some friends. After several
drinks, the topic of conversation turns to politics. You are asked for your opin-
ion on which of the following politicians will win the next Australian Federal
Election.

One of your close friends recommends that you say [insert option]. You know
that they follow Australian politics quite closely and know a lot about it; on
the other hand, they have just had several alcoholic drinks. In light of their
recommendation, who do you think will win the election?

Procedure: Direct elicitation. The direct elicitation task used the same ques-
tion, but adopted a much simpler procedure. People were simply asked to assign probabili-
ties to the four alternatives (expressed as percentages), where the numbers were constrained
to add up to 100%, using a sliding bar interface.

Results

The results from the direct elicitation task are plotted in Figure 14 and confirm our
hypothesis about the different prior beliefs across the two participant pools. The Australian
participants correctly recognized that John Howard and Gordon Brown were not legitimate
candidates for Australian Prime Minister, giving most probability to Malcolm Turnbull
(47%) and Bill Shorten (35%). In contrast, the American participant responses were more
or less uniform across Turnbull (28%), Shorten (21%), Howard (29%) and Brown (23%).

In the advice taking scenario, the results are also fairly predictable. As illustrated
in Figure 15, when participants are not knowledgeable about the topic they follow the
advice they are given, but tend not to if they know about the topic. Most (60%) American
participants followed their advisor but the Australian participants tended to choose Turnbull
(58% of responses) regardless of the advice given. Note the similarities between Figure 15
and 13: in this context the American participants gave responses similar to the sheep in
case study 2 where the Australian participants behaved in a fashion more akin to the goats,
which has implications for their relative ability to influence an iterated learning chain.

Simulated iterated learning chains

The data from the advice taking task allow us to examine how iterated learning
chains behave in the presence of systematic differences among participants. The experiment
produces a transition matrix of exactly the sort that iterated learning chains require – one
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Figure 14 . Average reported prior probabilities in the direct elicitation task. Most Australian
participants correctly recognized that Turnbull and Shorten were the only legitimate candidates,
whereas the American participants rated all four options about equally, suggesting that they had no
relevant knowledge about the topic.

that gives the probability of each possible response given each possible input, as in Figure 15.
Using this matrix, we can investigate what an iterated learning chain involving different
combinations of these participants would look like. A participant is initially selected at
random and their response (e.g., Turnbull) is “fed” to the next simulated participant by
sampling a participant randomly with replacement from those participants who were given
“Turnbull” as their advice.

This method makes it straightforward to simulate chains with different proportions
of each of the two populations (Americans or Australians). At each step, a participant is
chosen from either population with some fixed probability θ and their response is selected
based on the transition matrix of that population. By systematically varying θ in differ-
ent chains, we can explore the effect of different levels of heterogeneity, from completely
homogeneous (with chains composed entirely of Americans or entirely of Australians) to
maximally heterogeneous (with a chain composed of half Americans and half Australians).
Given our previous analysis as well as the observed priors and transition matrices, we expect
that mixing the two populations together in a single chain should be expected to system-
atically distort the chain away from the performance of either group individually, or what
one would get by simply averaging their priors. Because of their much stronger tendency to
follow the advice they are given, American participants should exert less influence on the
chain as a whole, and should be more willing to adjust their responses to mimic Australian
participants than vice versa.

To evaluate this, we simulated iterated learning chains using the procedure outlined
above, systematically varying the probability of selecting an Australian participant.6 The

6Our simulations use 100,000 iterations and a burn-in of 1,000 iterations, producing very smooth curves.
However, because the chains sample with replacement from a set of 320 participants, these curves are still
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Figure 15 . Empirical transition matrices estimated from the advice taking task. The advice is
shown on the x axis, while the choice of the participant is on the y axis. Americans (left panel)
tended to follow the advice they were given about the Australian election, as reflected in the darker
colors on the diagonal. By contrast, Australians (right panel) were likely to pick Malcolm Turnbull
regardless of what they were advised to do. This reflects differences in confidence about their prior
beliefs, which affects the degree to which they are influenced by their input.

results, shown in Figure 16, are as expected. The left panel shows the behavior of the entire
chain as a function of the proportion of Australian participants. As more Australians are
included, the probability assigned to Turnbull increases far more than a simple weighted
average over prior beliefs would suggest it should. In fact, the chain need only include a
small proportion of Australians (about 10-20%) for Turnbull to be the modal response.

To understand why this happens, we can separately analyze the responses of Aus-
tralian (middle panel) and American (right panel) participants in the chains. When the
chain consists entirely of Americans (left-hand side of both panels), there are no Australian
responses and the American workers therefore produce answers that are consistent with the
transition matrix plotted in the top left panel of Figure 15: 42% of responses are Brown,
followed by 30% Turnbull. However, as we start to introduce more Australians responses
into the chain, the distribution of responses produced by Americans changes systematically,
because the biases of the Australians affect the Americans via the input they receive. The
more Australians in the chain, the more the Americans favor Turnbull. In the extreme
case where the chain is 90% Australians and only 10% Americans, those Americans are
producing responses that are 47% Turnbull and only 24% Brown. Of critical importance,
however, the effect is not symmetric. Because the Australians are much more confident
in their knowledge than the Americans, the Australians reduce the degree to which they
choose Turnbull far less than the Americans increase theirs. Accordingly, the prior beliefs
held by Australian participants exert a disproportionate influence on the chain as a whole.7

subject to sampling error.
7More precisely (since we simulated the chains by sampling responses in the empirical data) it is the

transition probabilities in Figure 15 that exert this influence, which are presumably shaped by the prior
beliefs held by Australian and American participants. The precise relationship between the two depends
on how responses are generated. For instance, if participants were using MAP estimation rather than
sampling from the posterior, then the homogeneous chains (i.e., all Australian or all American) will reflect
an exaggerated version of the participant priors, as shown in Figure 5.
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Figure 16 . Long run behavior of simulated iterated learning chains, plotted as a function of the
probability θ of updating the chain with an Australian participant (x axis). The y axis reflects
the proportion of each of the four possible candidates, which in a typical iterated learning analysis
would be assumed to reflect people’s priors. Left panel: Response proportions from each chain as a
whole. As more Australians are included in the chain, the probability assigned to Turnbull increases.
Strikingly, it is necessary for the chain to include only a small proportion of Australians (between 10%
and 20%) for Turnbull to become the modal response. The reason for this is shown when we break
down responses by participant group. Middle panel. Responses from only the Australians in each
chain reveal relatively little change as more Australians are included: the Australian participants
are not strongly influenced by the input they are given. Right panel. Responses from only the
Americans in the chain show that they are highly distorted by the presence of Australians, appearing
to select Turnbull by a wide margin even though Americans’ actual priors were uniform over all four
options.

Discussion

The pattern of results is intuitive and in some respects unsurprising: the inference
problem pertains to Australian politics, the Australian participants brought considerable
prior knowledge into the task, and their responses were almost entirely unaffected by the
advice they were given. In contrast the American participants entered the task with very
little prior knowledge, and relied almost entirely on the advisor. This naturally created
a “sheep versus goats” scenario when we use the data to construct an iterated learning
chaining. Only a very small number of Australian participants need to be injected into
the chain to produce very substantial changes in the responses produced by the Ameri-
can participants. Arguably this is very sensible behavior, with the American participants
wisely deferring to the better knowledge that the Australian participants had. However,
it does very strongly imply that the responses produced by the American participants in
the heterogeneous chain do not in any meaningful sense reflect their prior knowledge about
Australian politics. Without any Australian influence, the American participants produce
iterated learning chains that don’t converge to anything sensible (the apparent bias for
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Gordon Brown possibly reflects name recognition based on UK politics), yet in a chain that
consists of an equal mixture of Australian and American participants those same partici-
pants would produce responses that look considerably more knowledgeable. In essence, the
long run behavior of our mixed iterated learning chain does not reflect a “shared” prior, nor
does it represent a “weighted average” of individual priors – rather, it is disproportionately
influenced by those individuals with the strongest biases.

General discussion

Our work represents a natural extension to the results presented by Griffiths and
Kalish (2007). In their original work, iterated learning with Bayesian agents was shown
to converge to the prior if those agents all share the same prior and likelihood. However,
when these assumptions do not hold, there can be systematic departures from this pattern.
Implications of this are briefly discussed below.

How widely do these results hold?

The general pattern we observe is that when individual differences exist, iterated
learning chains tend to have a homogenizing effect which minimises these differences and
overweights the contributions of those learners with the strongest biases. How widely do
these results hold? Based on our simulations, the homogenizing effect appears to be espe-
cially pervasive, appearing in every one of our case studies, including situations involving
non-Bayesian models. However, in some instances this homogenizing effect is modest, par-
ticularly if the information bottleneck is narrow. This pattern is consistent with earlier work
by Ferdinand and Zuidema (2008, 2009) who also found in a more restricted setting that
the size of the bottleneck matters considerably for heterogeneous iterated learning chains.

With regards to the disproportionate influence of “extremists”, a little more care
is required. As far as we can tell, learners with extreme biases always have a stronger
influence on other learners (we found this in every one of our examples). However, this does
not always lead to a systematic shift in the overall distribution of responses. Perhaps the
clearest illustration of this was the finding shown in Figure 12: in the continuous setting, the
iterated learning chain only produces a shift in the mean of the response distribution when
there are learners with extreme and strongly held biases and there are no counterbalancing
extremists on the other side of the distribution to counteract their influence. This probably
explains why Ferdinand and Zuidema (2008, 2009) did not find evidence of systematic
distortion despite considering heterogeneous iterated learning chains. Their heterogeneous
agents happened to have equally strong prior biases, thus counterbalancing each other.

Broader implications

The paradigm of iterated learning leads a bit of a double life within the psychological
literature. As a result, the implications of our work dependon the context in which it is to be
applied. As a theoretical tool, the underlying dynamics of iterated learning chains provide
valuable insights into how information is transmitted between individuals or generations.
Our results are important because, unlike other work exploring circumstances in which
iterated learning distorts the prior (e.g., Kirby et al., 2007), we find that this distortion is
hard to precisely characterize and also means that some individuals have more influence than
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others. Who those individuals are and exactly what their influence is may vary considerably
depending on the domain the learning situation.

Similarly, we found that learners with the most confidence in their own beliefs will
be less influenced by others and their beliefs will also exert a disproportionate influence on
others. As is sometimes noted (e.g., Russo & Schoemaker, 1992), the ability to influence
others in this fashion provides a motivation to express confidence, and in turn provides a
partial explanation for the pervasive overconfidence effect (e.g., Lichtenstein, Fischhoff, &
Phillips, 1977) in human judgment. If the goal is to have cultural influence rather than be
correct, strong biases are better than weak ones.

However, our simulation results also suggest a natural and slightly counterintuitive
extension of this theory: that individual underconfidence can produce collective overconfi-
dence. In the jury decision-making scenario, the behavior of a chain of sheep-like jurors
produced perverse outcomes even though all jurors were Bayesian reasoners sharing the
same priors. While each individual juror was underconfident – in the sense of underweight-
ing the relative importance of their own beliefs relative to the input of others – the stationary
distribution of a chain of such learners ended up overconfident, insofar as it exaggerated
the prior beliefs of all learners. This effect is strikingly reminiscent of the groupthink phe-
nomenon (Esser, 1998; Janis, 1982). Our results suggest that Bayesian reasoners are no
more immune to such effects than any other kind of learner, in the (very likely) event that
the learner does not have perfectly calibrated confidence in their own beliefs.

Iterated learning as an elicitation tool

On the methodological side, iterated learning has often been used as a tool for explor-
ing the inductive biases of individuals. Based on formal results suggesting that the station-
ary distribution of an iterated learning chain is the prior, researchers in cognitive science
have sometimes used these designs as a form of elicitation task, in which the (between-
subject) distribution of responses is taken to be reflective of some (within-subject) latent
mental representation of the world. Our results suggest that such conclusions may be un-
warranted whenever individual differences are present. When people bring different priors
to a task, there is no inherent reason to think that the stationary distribution of an iter-
ated learning chain bears any meaningful relationship to those priors. The distortions are
systematic in the sense that stronger biases lead to disproportionate influence, while simul-
taneously being difficult to predict in the sense that one cannot specify with any precision
in what way that disproportionate influence is realized.

This lack of predictability is especially troublesome from a methodological point of
view. In our third case study, it was not at all obvious to us that heterogeneity among
category learners would produce a very large distortion of “category size” biases but almost
no distortion to the bias for “coherent” categories. Indeed, without some other method
for checking that one’s participants all share the same beliefs and that those beliefs are
not mis-calibrated as in sheep jurors – as well as some tool for verifying how sensitive a
particular bias is to distortion via the iterated learning methodology – it is hard to see how
any researcher can be confident that an iterated learning experiment has revealed a “real”
inductive bias. On this front, we are a little more skeptical of the utility of iterated learning



HETEROGENOUS ITERATED LEARNING 35

methods for exploring individual inductive biases.8

What are the biases that iterated learning reveals?

Our results raise a question about what precisely constitutes an “inductive bias”.
When Bayesian reasoners are involved, the usual way of characterizing an inductive bias is
through the prior distribution that a learner imposes over a set of hypotheses. As such, it
is typically assumed that an iterated learning chain reveals the prior (Griffiths & Kalish,
2007). Our main result in this paper has argued that this is not true when learners have
different biases. However, consistent with Smith (2009) we also find that iterated learning
can fail to reveal the prior even when all learners are Bayesians with a shared prior. In the
juror scenario, a homogeneous chain of Bayesian sheep produced behavior that substan-
tially misrepresents their priors. This occurs because the sheep jurors applied the wrong
likelihood function and overweighted the evidentiary value of other jurors’ opinions. The
fact that this miscalibration has an impact on the stationary distribution of an iterated
learning chain is revealing: even with Bayesian reasoners, the “inductive bias” revealed by
an iterated learning is not a transparent reflection of the prior distribution, but is instead
a product of both the prior distribution and the likelihood. This should not be surprising.
In real life, one’s biases do not solely consist of the beliefs one has about the world (priors):
one’s willingness to have those beliefs changed and the manner in which those changes occur
(likelihoods) are also a form of bias. As our results illustrate, the likelihood can shape the
behavior of an iterated learning chain just as much as the priors.

An intriguing generalization of this issue emerges when we consider the question at
the population level. What inductive biases does a population of learners possess? Like most
researchers in this area, we have adopted the simplest view and assumed that the population
prior corresponds to the average of individual priors. Yet, in many real world situations, it
might be more sensible to weight the knowledgeable or certain people more: after all, no
one person retains all of the cultural knowledge of an entire population. In our experiment,
for example, American participants in a heterogeneous iterated learning design were able
produce more accurate responses than they would have done in a homogeneous chain,
precisely because they relied on the stronger inductive biases of Australian participants.
From this perspective, it might be more natural to describe the population prior in a
fashion that weights highly confident individuals most heavily. Our simulations in the first
case study suggest that iterated learning chains do not converge to a weighted population
average of this sort either, at least not in a straightforward way, but it is at this point an
underexplored issue and an opportunity for future work.

More generally, in richer social contexts, agents need to keep track of the goals of
other agents and be wary of potential deception. People often express strong opinions in
order to influence others, and a learner may discount extreme or very confident opinions
as a result. Initial work in our lab suggests that when learners are given the ability to
make inferences about who to trust and listen to, the resulting distribution still does not
converge to the prior. Rather, at least much of the time, subpopulations tend to break off

8Another methodological possibility might be to use iterated learning experiments as a tool for inferring
the bias parameters of relevant cognitive models – that is, using the input-output data pairs produced by the
experiments in order to fit models. Our research here is agnostic about the utility of this method, although
it represents an interesting angle for future work.
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and form “echo chambers” composed of agents who only communicate within the emergent
subpopulation. Precisely characterizing these dynamics is also a matter for future work.

In general, our research shows that even within very simple iterated learning chains,
heterogeneity leads unpredictable convergence outcomes. When populations of learners
vary, the resulting information transmission chain is disproportionately shaped by those
with stronger biases. However, exactly how and to what extent it is shaped depends on
a complicated interplay of diverse factors. Given the ubiquity of individual differences
across nearly every domain of human cognition, understanding the effects of heterogeneity
is an important part of appropriately applying iterated learning methodologically as well
as understanding cultural and linguistic evolution in the world.

References

Ackerman, P. (1987). Individual differences in skill learning: An integration of psychometric
and information processing perspectives. Psychological Bulletin, 102 (1), 3–27.

Barrett, L., Tugade, M., & Engle, R. (2004). Individual differences in working memory
capacity and dual-process theories of the mind. Psychological Bulletin, 130 (4), 553–
573.

Bartlett, F. C. (1932). Remembering. Macmillan.
Brighton, H., Kirby, S., & Smith, K. (2005). Language as evolutionary system. Physics of

Life Reviews, 2, 177–226.
Canini, K., Griffiths, T. L., Vanpaemel, W., & Kalish, M. (2014). Revealing human inductive

biases for category learning by simulating cultural transmission. Psychonomic Bulletin
& Review.

Chambers, J., Trudgill, P., & Schilling-Estes, N. (2003). The handbook of language variation
and change. Blackwell.

Christiansen, M. & Chater, N. (2008). Language as shaped by the brain. Behavioral and
Brain Sciences, 31, 489–558.

de Bruin, B., Parker, A., & Fischhoff, B. (2007). Individual differences in adult decision-
making competence. Journal of Personality and Social Psychology, 92 (5), 938–956.

Deacon, T. (1997). The symbolic species. W. W. Norton & Co.
Deary, I., Whalley, L., Lemmon, H., Crawford, J., & Starr, J. (2000). The stability of

individual differences in mental ability from childhood to old age: Follow-up of the
1932 Scottish Mental Survey. Intelligence, 28 (1), 49–55.

Ellis, R. (2015). Understanding second language acquisition (2nd). Oxford University Press.
Epstein, S., Pacini, R., Denes-Raj, V., & Heier, H. (1996). Individual differences in intu-

itive–experiential and analytical–rational thinking styles. Journal of Personality and
Social Psychology, 71 (2), 390–405.

Esser, J. K. (1998). Alive and well after 25 years: A review of groupthink research. Organi-
zational behavior and human decision processes, 73 (2), 116–141.

Faigman, D. L. (2007). Anecdotal forensics, phrenology, and other abject lessons from the
history of science. Hastings Law Journal, 59, 979–1000.

Fay, N. & Ellison, M. (2013). The cultural evolution of human communication systems in
different sized propulations: usability trumps learnability. PloS one, 8 (8), e71781.



HETEROGENOUS ITERATED LEARNING 37

Ferdinand, V., Kirby, S., & Smith, K. (2014). Regularization in language evolution: on the
joint contribution of domain-specific biases and domain-general frequency learning. In
Proceedings of the 10th International Evolution of Language Conference.

Ferdinand, V., Thompson, B., Kirby, S., & Smith, K. (2013). Regularization behavior in a
non-linguistic domain. In Proceedings of the 35th Annual Conference of the Cognitive
Science Society.

Ferdinand, V. & Zuidema, W. (2008). Language adapting to the brain: a study of a Bayesian
iterated learning model. Inst. for Logic, Language and Computation.

Ferdinand, V. & Zuidema, W. (2009). Thomas’ theorem meets Bayes’ rule: A model of the
iterated learning of language. In Proceedings of the cognitive science society (Vol. 31).

Gintis, H. (2011). Gene-culture coevolution and the nature of human sociality. Philosophical
Transactions of the Royal Society B: Biological Sciences, 366, 878–888.

Givòn, T. (1985). Function, structure, and language acquisition. In D. Slobin (Ed.), The
crosslinguistic study of language acquisition (Vol. 2, pp. 1005–1028). Lawrence Erl-
baum Associates.

Goertzel, T. (1994). Belief in conspiracy theories. Political Psychology, 731–742.
Greenwald, A., McGhee, D., & Schwartz, J. (1998). Measuring individual differences in

implicit cognition: the implicit association test. Journal of Personality and Social
Psychology, 74 (6), 1464–1480.

Griffiths, T. L. & Kalish, M. L. (2007). Language evolution by iterated learning with
Bayesian agents. Cognitive Science, 31 (3), 441–480.

Hermann, E., Call, J., Hernandez-Lloreda, M., Hare, B., & Tomasello, M. (2007). Humans
have evolved specialized skills of social cognition: the cultural intelligence hypothesis.
Science, 317 (5843), 1360–1366.

Hudson Kam, C. & Newport, E. (2005). Regularizing unpredictable variation: the roles of
adult and child learners in language formation and change. Language Learning and
Development, 1 (2), 151–195.

Humphreys, M. & Revelle, W. (1984). Personality, motivation, and performance: A theory
of the relationship between individual differences and information processing. Psycho-
logical Review, 91 (2), 153–184.

Janis, I. L. (1982). Groupthink: psychological studies of policy decisions and fiascoes.
Houghton Mifflin Boston.

Kalish, M., Griffiths, T. L., & Lewandowsky, S. (2007). Iterated learning: Intergenerational
knowledge transmission reveals inductive biases. Psychonomic Bulletin & Review,
14 (2), 288–294.

Kemp, C. & Regier, T. (2012). Kinship categories across languages reflect general commu-
nicative principles. Science, 336 (6084), 1049–1054.

Kidd, E., Donelly, S., & Christiansen, M. (in press). Individual differences in language
acquisition and processing. Trends in Cognitive Sciences.

Kirby, S. (2000). Syntax without natural selection: how compositionality emerges from
vocabulary in a population of learners. In The evolutionary emergence of language:
social function and the origins of linguistic form (pp. 303–323). Cambridge University
Press.



HETEROGENOUS ITERATED LEARNING 38

Kirby, S. (2001). Spontaneous evolution of linguistic structure: an iterated learning model
of the emergence of regularity and irregularity. IEEE Transactions on Evolutionary
Computation, 5 (2), 102–110.

Kirby, S., Cornish, H., & Smith, K. (2008). Cumulative cultural evolution in the laboratory:
an experimental approach to the origins of structure in human language. Proceedings
of the National Academy of Sciences, 105 (31), 10681–10686.

Kirby, S., Dowman, M., & Griffiths, T. L. (2007). Innateness and culture in the evolution
of language. Proceedings of the National Academy of Sciences, 104 (12), 5241–5245.

Kirby, S., Griffiths, T. L., & Smith, K. (2014). Iterated learning and the evolution of lan-
guage. Current Opinion in Neurobiology, 28C (108-114).

Kirby, S., Tamariz, M., Cornish, H., & Smith, K. (2015). Compression and communication
in the cultural evolution of linguistic structure. Cognition, 141, 87–102.

Lew, T. & Vul, E. (2015). Structured priors in visual working memory revealed through it-
erated learning. In Proceedings of the 37th Annual Conference of the Cognitive Science
Society. Austin, TX: Cognitive Science Society.

Lewandowsky, S., Griffiths, T. L., & Kalish, M. (2009). The wisdom of individuals: exploring
people’s knowledge about everyday events using iterated learning. Cognitive Science,
33, 969–998.

Lichtenstein, S., Fischhoff, B., & Phillips, L. D. (1977). Calibration of probabilities: The
state of the art. In Decision making and change in human affairs (pp. 275–324).
Springer.

Miyake, A. & Friedman, N. (2012). The nature and organization of individual differences
in executive functions: Four general conclusions. Current Directions in Psychological
Science, 21 (1), 8–14.

Morgan, E. & Levy, R. (2016). Frequency-dependent regularisation in iterated learning. In
Evolang.

Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relation-
ship. Journal of Experimental Psychology: General, 115 (1), 39–57.

Nosofsky, R. M. (1991). Relation between the rational model and the context model of
categorization. Psychological Science, 2 (6), 416–421.

PCAST. (2016). Forensic science in criminal courts: ensuring scientific validity of feature-
comparison methods. President’s Council of Advisors on Science and Technology.

Perfors, A. & Navarro, D. J. (2014). Language evolution can be shaped by the structure of
the world. Cognitive Science, 38 (4), 775–793.

Pinker, S. (2003). Language as an adaptation to the cognitive niche. In S. Kirby & M. Chris-
tiansen (Eds.), Language evolution: states of the art (pp. 16–37). Oxford University
Press.

Pinker, S. & Bloom, P. (1990). Natural language and natural selection. Behavioral and
Brain Sciences, 13 (4), 707–784.

Pinker, S. & Jackendoff, R. (2005). The faculty of language: what’s special about it? Cog-
nition, 95 (2), 201–236.

Pothos, E. M. & Bailey, T. M. (2009). Predicting category intuitiveness with the rational
model, the simplicity model, and the generalized context model. Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 35 (4), 1062–1080.



HETEROGENOUS ITERATED LEARNING 39

Rafferty, A., Griffiths, T. L., & Klein, D. (2014). Analyzing the rate at which languages lose
the influence of a common ancestor. Cognitive Science, 38, 1406–1431.

Reali, F. & Griffiths, T. L. (2009). The evolution of frequency distributions: relating regu-
larization to inductive biases through iterated learning. Cognition, 111, 317–328.

Russo, J. E. & Schoemaker, P. J. (1992). Managing overconfidence. Sloan management
review, 33 (2), 7.

Scott-Phillips, T. (2014). Speaking our minds: why human communication is different, and
how language evolved to make it special. Palgrave Macmillan.

Silvey, C., Kirby, S., & Smith, K. (2014). Word meanings evolve to selectively preserve
distinctions on salient dimensions. Cognitive Science.

Smith, K. (2009). Iterated learning in populations of bayesian agents. In Proceedings of the
cognitive science society (Vol. 31).

Smith, K., Perfors, A., Fehér, O., Samara, A., Swoboda, K., & Wonnacott, E. (in press).
Language learning, language use, and the evolution of linguistic variation. Philosoph-
ical Transactions of the Royal Society B.

Smith, K. & Wonnacott, E. (2010). Eliminating unpredictable variation through iterated
learning. Cognition, 116, 444–449.

Sperber, D. (1996). Explaining culture: a naturalistic approach. Wiley-Blackwell.
Stanovich, K. & West, R. (1998). Individual differences in rational thought. Journal of

Experimental Psychology: General, 127 (2), 161–188.
Tauber, S., Navarro, D. J., Perfors, A., & Steyvers, M. (2017). Bayesian models of cogni-

tion revisited: Setting optimality aside and letting data drive psychological theory.
Psychological Review, 124, 410–441.

Tomasello, M. (1999). The cultural origins of human cognition. Harvard University Press.
Unsworth, N. & Engle, R. (2007). The nature of individual differences in working memory ca-

pacity: Active maintenance in primary memory and controlled search from secondary
memory. Psychological Review, 114 (1), 104–132.

Vouloumanos, A. (2008). Fine-grained sensitivity to statistical information in adult word
learning. Cognition, 107, 729–742.


