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Abstract

This article explores some of the philosophical implications of the Bayesian modeling paradigm.
In particular, it focuses on the ramifications of the fact that Bayesian models pre-specify an inbuilt
hypothesis space. To what extent does this pre-specification correspond to simply ‘‘building the
solution in’’? I argue that any learner (whether computer or human) must have a built-in hypoth-
esis space in precisely the same sense that Bayesian models have one. This has implications for the
nature of learning, Fodor’s puzzle of concept acquisition, and the role of modeling in cognitive
science.

1. Introduction

In recent years, Bayesian modeling has become an increasingly popular tool in cognitive
science. It has been used to explore questions in topics as wide-ranging as causal learning
and reasoning (e.g., Pearl 2000; Steyvers et al. 2003; Griffiths and Tenenbaum 2009),
decision making (e.g., Lee 2006), concept learning and representation (e.g., Anderson
1991; Griffiths et al. 2007; Kemp et al. 2007; Sanborn et al. 2010), reasoning about agents
(e.g., Baker et al. 2007; Feldman and Tremoulet 2008) theory learning and representation
(e.g., Goodman et al. 2007; Griffiths et al. 2010), and language (e.g., Griffiths and Kalish
2007; Xu and Tenenbaum 2007; Feldman and Griffiths 2009; Frank et al. 2009; Goldwa-
ter et al. 2009; Perfors et al. 2011b). The popularity of the Bayesian approach has led
many questions about its utility and relevance.1 What are its strengths and weaknesses as a
framework for understanding the pressing questions in cognitive science? As with any
modeling approach, it makes certain assumptions about – and has certain implications for
– cognition and cognitive development. One central issue in cognitive science is the
question of innateness: to what extent, and in what way, is human knowledge and behav-
ior dependent on inborn or unlearned principles or constraints? The goal of this paper is
to explore how Bayesian modeling touches on these fundamental issues.

Bayesian models are neither strongly nativist nor strongly empiricist, primarily because
they are flexible enough to capture either type of theory. As a result, the relevance of the
approach to questions of innateness does not derive from it taking a strong theoretical
stance one way or another. Rather, because Bayesian models require the explicit specifi-
cation of details that may be important but easy to overlook when a theory is verbally
specified, they can clarify which factors are necessary to specify (in any model) as well as
what the effects of such specification might be. Moreover, because the models can simu-
late behavior that is far more complex than we can predict through simple introspection,
they are a useful tool for understanding what kind of learning is actually possible given
different assumptions about the learner and the data available.

In this paper I focus on one primary area in which the Bayesian framework may espe-
cially illuminating: the implications of the fact that in Bayesian models, hypothesis spaces
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must be explicitly specified. Because of this, Bayesian models might appear to be strongly
nativist, but I argue instead that all models and learners must (implicitly or explicitly)
build in hypothesis spaces in just this way. One implication is that any conception of
learning which relies on not having a built-in hypothesis space is incoherent: the interest-
ing question for cognitive scientists is the nature and extent of this built-in knowledge.
I devote much of the paper to exploring this idea and its ramifications. First, though,
I briefly review the basics of Bayesian modeling.2

2. The Bayesian Approach: A Brief Introduction

One of the primary aims of Bayesian modeling is to explore questions on Marr’s compu-
tational level (1982). At this level the focus is on understanding how different characteris-
tics of the learner, combined with differences in the type and nature of the data available,
affect the nature of learning. What are the abstract goals of the cognitive system? What
problem does it solve? How do the constraints under which it solves that problem affect
what is learned? Bayesian modeling is also focused on the question of why: Why does the
cognitive system have these goals? What would a good solution look like, and why
would it be good?

The main idea of the Bayesian approach is to use the mathematics of probability theory
to yield normative answers to these questions, and to use those answers as a standard
against which human performance can be compared. Within probability theory, degrees
of belief in some hypothesis or theory h are represented using real numbers ranging from
0 to 1, and Bayes’ Rule (Equation 1 below) describes how to update beliefs in response
to new data. According to Bayes’ Rule, the posterior probability of a hypothesis h given
some data d, denoted P(h|d), is proportional to the prior probability of that hypothesis
P(h) and the likelihood of observing that data if that hypothesis were true P(d|h). All
Bayesian models thus capture a natural tradeoff between prior probability and likelihood,
which often has an intuitive interpretation balancing between a sense of plausibility based
on background knowledge on one hand and the data-driven sense of a ‘‘suspicious coin-
cidence’’ on the other. If multiple hypotheses in some hypothesis space – some set of
mutually exclusive hypotheses H – are being compared, then the posterior probability of
each individual hypothesis hi is calculated in the same way, and the hypothesis with the
highest posterior probability is identified by dividing each by the total probability of all of
the hypotheses in question:

PðhijdÞ ¼
PðdjhiÞPðhiÞP

hj2H PðdjhjÞPðhjÞ
ð1Þ

The denominator in Equation 1 provides a normalizing term which is the sum of the
probability of each of the possible hypotheses under consideration; this ensures that Bayes’
Rule will reflect the proportion of all of the probability that is assigned to any single
hypothesis hi, and (relatedly) that the posterior probabilities of all hypotheses sum to one.
This captures what we might call the ‘‘law of conservation of belief’’: a rational learner
has a fixed ‘‘mass’’ of belief to allocate over different hypotheses, and the act of observing
data just pushes this mass around to different regions of the hypothesis space. If the data
lead us to strongly believe one hypothesis, we must decrease our degree of belief in all
other hypotheses. By contrast, if the data strongly disfavor all but one hypothesis, then
whichever remains, however, implausible a priori, is very likely to be the truth.
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We can illustrate how this might work with a simple example. Suppose your friend
Elmo has two bags: bag A contains four jellybeans (one black, one red, and two yellow)
and bag B contains two (both yellow). Elmo then pulls a single yellow jellybean out of
one of them. What is the probability that it is bag B? If hA is the hypothesis that it is bag
A and hB is the hypothesis that it is bag B, then a prior capturing the fact that Elmo likes
each bag equally is given by P(hA)¼P(hB)¼0.5. The likelihood of one yellow jellybean is
50% for bag A (two out of four jellybeans are yellow) and 100% for bag B (all jellybeans
are yellow). Thus, the posterior probability of bag B given one yellow jellybean is 66.7%:

PðhBjdÞ ¼
ð1:0Þð0:5Þ

ð1:0Þð0:5Þ þ ð0:5Þð0:5Þ ¼ 0:667 ð2Þ

A bias for a certain kind of simplicity – a type of automatic Ockham’s Razor – emerges
naturally out of Bayesian modeling (MacKay 2003). As data accumulates, hypotheses that
license more specific predictions will tend to be preferred over hypotheses that are consis-
tent with many possibilities. Imagine that Elmo draws jellybeans two more times from
the same bag, replacing the old draw and mixing thoroughly in between, and each time
it is yellow. Intuitively it feels now feels even more likely to be bag B; this is because if it
were bag A, it is an increasingly suspicious coincidence that all of the jellybeans are yel-
low. Bayes’ Rule captures this: P(hB|d) given these three independent draws is now
88.9%.

Although this example is trivial, it captures an important characteristic of Bayesian
modeling: the assumption that data are generated by some underlying process or mecha-
nism. In this example, the data (jellybeans) are generated (drawn from) bags containing
different jellybeans. In cognitive models, sentences may be generated by a grammar,
observed events may be generated by some underlying network of causal relations, and
words might be generated by a lexicon. A learner’s goal is to evaluate different hypothe-
ses about the underlying nature of the generative process, and to make predictions based
on the most likely ones. A model is simply a specification of the generative process at
work, identifying the steps (and associated probabilities) involved in generating data. Both
priors and likelihoods are typically straightforward to define given a generative model; see
Perfors et al. (2011a) for more details.

We can illustrate this with a slightly more realistic model. The left side of Fig. 1 shows
three data points generated by a hidden process of some sort. Figure 1 also shows two
possible hypotheses about that process, each corresponding to a Gaussian distribution
(specified by its mean and variance) that contains the data points. Hypothesis hA is consis-

Fig.1. Example of generative model with two hypotheses. The left panel shows three data points generated by
some sort of hidden process. A and B represent two hypotheses about the nature of the hypothesis. Both are
Gaussian distributions consistent with the data, but hypothesis A predicts a wider variety of data points while B is
more tightly clustered around the data. A Bayesian model would calculate the probability of each hypothesis based
on its likelihood (degree of fit to the data) and prior probability.
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tent with more distinct data points, while hB is more tightly located around the observed
data. The probability of each hypothesis can be calculated based on the likelihood of the
data (in this case, the probability that each Gaussian would have generated each point)
and the prior probability of each hypothesis (which would be set by the modeler, proba-
bly in the form of separate priors over expected means and variances). Although this
example is still simplistic, it is slightly more cognitively interesting than the jellybean one:
many simple categorization problems correspond to learning the nature of the distribution
responsible for generating the exemplars within a category.

All Bayesian models calculate the posterior probability of a set of hypotheses and make
predictions on the basis of those probabilities. Different Bayesian models differ on almost
every other particular, and the interesting cognitive questions often center on the ques-
tions or assumptions incorporated into those particulars. One of the main points of dif-
ference is simply what the hypothesis space is. In the examples so far, the hypothesis
spaces each contained only two hypotheses. However, hypothesis spaces can be any size,
and are generally defined by the structure of the problem and the nature of the represen-
tation used. For instance, in the jellybean case, it is assumed that learners can represent
jellybeans, bags, colors, and distributions of jellybeans within bags. This results in a
hypothesis space of possible bags whose size is affected by the number of different colors
jellybeans can have: such a space could be finite (if the bags were constrained to be of
finite size) or infinite (if they were not). In the Gaussian example, the hypothesis space is
defined by the dimension(s) of the metric space in which the data points exist, as well as
the boundaries, if any. In problems of more cognitive interest, hypotheses might consist
of grammars, words and their mappings, networks of cause and effect, graph structures,
predicate logics, probability distributions in a metric space, and more. As hypothesis
spaces get increasingly large, it is rare for the posterior probability of each individual
hypothesis to be calculated. Instead, the hypothesis space is searched using computational
techniques that sample hypotheses from the space and are guaranteed to eventually con-
verge on the true distribution (see, Gilks et al. 1996; Doucet et al. 2001; Gelman et al.
2004).

It is clear that an intrinsic aspect of Bayesian modeling involves the specification of a
hypothesis space. But, for a learner, where does that space come from? If Bayesian mod-
eling simply consists of evaluating the probability of hypotheses in a pre-specified space,
in what sense does it capture learning at all? In the next sections I consider this and related
questions, including the nature of prior probabilities, what it means to be ‘‘learnable’’,
and the role of modeling in cognitive science in general.

3. Pre-specification of the Hypothesis Space: What Does it Mean to Learn?

In some sense, Bayesian models do not appear to be learning at all. The entire hypothesis
space, as well as the evaluation mechanism for comparing hypotheses (including the
prior), has been given by the modeler; all the model does is search among and chose
from hypotheses that already exist. Isn’t development and learning – particularly the sort
of learning that children perform over the first years of their life – something more than
this? Shouldn’t it encompass the discovery of some sort of genuine novelty? Our intuitive
notion of learning certainly does not appear at first glance to be captured by a model that
simply does hypothesis testing within an already-specified hypothesis space.

The same intuition lies at the core of Fodor’s famous puzzle of concept acquisition
(Fodor 1975, 1981). His essential point is that one cannot acquire new concepts via
hypothesis testing because one must possess them in order to test them in the first place.
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Therefore, except for those concepts that can be created by composing them from others
(which Fodor believes excludes most lexical concepts), all concepts (including CARBURE-

TOR and GRANDMOTHER) must be innate.
However, this intuition is misleading. To understand why this is, it is helpful to make a

distinction between two separate notions of what it means to build in a hypothesis space.
A hypothesis space is ‘‘built in’’ in a trivial sense if the model is equipped with the repre-
sentational capacity to represent any of the hypotheses in the space: given this capacity,
even if the model is not currently evaluating or considering any given hypothesis, that
hypothesis is in some sense latent in that space. Let us denote the space of all hypotheses
that can be represented as the latent hypothesis space. The ability to represent possible
hypotheses in a latent hypothesis space is necessary for learning of any sort, in any model
or being. The latent hypothesis space can be contrasted with the hypotheses that are being
explicitly considered or evaluated – the hypotheses that are being actively represented and
manipulated by the conceptual system – which I refer to as the explicit hypothesis space.

To make this distinction clear, we can use the analogy of a standard English typewriter
with an infinite amount of paper. It is capable of producing a certain space of documents,
which includes things like The Tempest and does not include, say, a Vermeer painting or
a poem written in Russian. This typewriter represents the generative model for the
hypothesis space of a Bayesian learner: each possible document that can be typed is a
hypothesis, the infinite set of documents producible by the typewriter is the latent
hypothesis space,3 and the documents that have actually been typed out so far make up
the explicit hypothesis space. Is there a difference between documents that have been
created by the typewriter and documents that exist only in the latent hypothesis space?
Of course there is: documents that have been created can be manipulated in all sorts of
ways (reading, burning, discussing, editing) that documents latent in the space cannot.

In the same way, there may be a profound difference between hypotheses that can be
evaluated by the learner and hypotheses that are simply latent in the space: the former
can be manipulated by the cognitive system – evaluated, used in inference, compared to
other hypotheses – but the latter cannot. A concept, when used in the sense of something
that can be manipulated by the cognitive system in precisely these ways, is thus part of a
learner’s explicit hypothesis space. In this conceptualization, hypothesis generation thus
describes the process by which hypotheses move from the latent space to the explicit
space – the process by which our typist decides what documents to produce – and
hypothesis testing describes the process of deciding which of the documents produced
should be preferred (by whatever standard). Learning, then, corresponds to the entire
process of hypothesis generation and testing: it would never involve new hypotheses
being added to the latent hypothesis space. This is the part that doesn’t ‘‘feel’’ like learn-
ing, because all of the hypotheses are built into the latent space from the beginning.

However, this intuitive feeling is misleading. If we take ‘‘learning’’ to mean ‘‘discover-
ing something that was not built into the latent hypothesis space’’, then there are only
two conclusions possible. Either the hypotheses appear in the latent hypothesis space
completely arbitrarily, or nothing can ever be learned.

How is this so? Imagine that we could explain how a new hypothesis could be added
to a latent hypothesis space; such an explanation would have to make reference to some
rules or some kind of process for adding things, since that is what an explanation is. That
process and those rules, however, would implicitly define a ‘‘meta’’ latent space of their
own. And because this meta-space is pre-specified (implicitly, by that process or set of
rules) in the exact same way the original hypothesis space was pre-specified (implicitly,
by the original generative process), the hypotheses within it are ‘‘innate’’ in precisely the
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same way that the hypotheses in the original latent space were. In general, the only way
for something to be learned but not built into the latent hypothesis space is for it to be
able to spring into a hypothesis space in such a way that is essentially random (i.e., unex-
plainable via some process or rule). If this is truly what learning is, it seems to preclude
the possibility of studying it scientifically; but luckily, this is not what most of us gener-
ally mean by learning.

One implication of this is that Fodor’s point is true but trivial. If one understands
‘‘concept’’ to mean ‘‘something that can be represented by the brain’’, then all of our
concepts are innate – they exist in the latent hypothesis space of possible things the brain
can represent (a space implicitly defined by the structure of the brain). In the more inter-
esting sense, where ‘‘having concept’’ means that the concept is available at the cognitive
level – it is capable of being manipulated by the cognitive system – then it need not be
innate (i.e., having always been available at that level).

But isn’t the process of hypothesis generation – the movement of a hypothesis from
the latent space to the explicit space – itself a type of manipulation? It is indeed, but there
is an important distinction between the two ways that hypotheses can be manipulated.
Hypotheses in the explicit hypothesis space can be manipulated in all of the ways we
intuitively think a cognitive system manipulates ideas: testing them, comparing them, etc.
In terms of Bayesian modeling, these are the hypotheses that are evaluated using Bayes’
Rule and used to generate predictions or inferences. However, a second type of manipu-
lation involves searching the latent hypothesis space and identifying the hypotheses that
will become explicit hypotheses. The reason this is a different kind of manipulation is that
what is being manipulated is not the hypotheses themselves but the primitives that define
those hypotheses in the first place.

To make sense of this, note that the discussion of latent spaces and meta-latent spaces
actually implies a hierarchy of hypothesis spaces. On any given level of abstraction, as we
have seen, the latent space is defined by some set of primitives or rules. In the typewriter
example, the primitives might be the paper, the different keys on the typewriter, and the
physical constraints on the movement of the typewriter (tapping of keys); this permits
documents with rows of letters and spaces, but not documents that aren’t made of paper,
or letters floating in the air, or oil paintings. In the Gaussian example, the primitives
would be the mean and variance (along with factors like the dimensions of the space, real
numbers, the equation of a Gaussian, and certain inherent notions of magnitude that are
necessary for such an equation to make sense).

These primitives correspond to the hypotheses of a higher-level space, as Fig. 2 illus-
trates. For instance, a typewriter is just one possible way that metal, plastic, and ink can
be arranged and used to yield documents; different arrangements – like a Cyrillic key-
board – would define a different space of possible documents. Thus, an English-language
typewriter and a Cyrillic typewriter correspond to two of many possible hypotheses in
the space of document-producing machines. Similarly, Gaussians are but one option out
of a space of ‘‘possible equations’’; a different choice of equations would define a different
set of solutions. In principle, this could extend even higher, since ‘‘the space of all equa-
tions’’ itself is only defined based on the primitives of our mathematics: different elemen-
tary operations would define an entirely different set of equations to choose from. These
examples are purely illustrative, and it is possible to invent spaces whose details might
vary considerably;4 the point here is simply to demonstrate how hypothesis spaces, by
their nature, are located in a hierarchy of different levels of abstraction.

The notion of a hierarchy of hypothesis makes clear how hypothesis generation might
work in principle. During hypothesis testing, hypotheses at one level are compared as
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hypotheses with hypotheses at the same level, but during hypothesis generation a hypothe-
sis is constructed by manipulating the hypotheses at a higher level (i.e., the primitives that
define the latent space). Every Bayesian model searches the latent hypothesis space by
doing some sort of manipulation of the primitives that help to define that space. For
instance, in the Gaussian example each hypothesis is a Gaussian with some mean and var-
iance, and individual hypotheses about Gaussians are compared based on their probability
as calculated by Bayes’ Rule. However, new hypotheses are found by manipulating the
values of the primitives: for instance, by adding or subtracting from the means or vari-
ances of existing hypotheses. Within the typewriter analogy, new documents would be
generated by pressing different keys in different orders.

What does this all mean in terms of Fodor’s argument? Fodor argues that hypothesis
testing requires that the concept (i.e., the hypothesis) be represented explicitly – that is,
that it be in the explicit hypothesis space. His conclusion from this is that one must
therefore already explicitly possess concepts. I am arguing that the conclusion doesn’t fol-
low from the premise: hypothesis testing does indeed require that the hypothesis be in
the explicit hypothesis space, but hypotheses don’t enter the explicit space (i.e., come to
be possessed) through hypothesis testing – or at least not hypothesis testing at that level.
They enter the explicit hypothesis space through testing at a level whose primitives do
not correspond to verbalizable concepts.

There is thus no reason that hypotheses at one level should decompose or be express-
ible in terms of hypotheses at the same level. That is, we shouldn’t expect concepts to be
decomposable into other concepts (i.e., other hypotheses that can be manipulated by the
cognitive system). They might be (and probably are) decomposable into primitives of
some sort, but because those are on a different level, they shouldn’t be available to the
cognitive system for verbalization: verbalization is a particular kind of manipulation by
the cognitive system that applies only to hypotheses at that level. This reasoning reveals

Fig. 2. Schematic illustration of a hierarchy of hypothesis spaces. The explicit hypothesis space at level n, En, is a
subset of the latent hypothesis space at that level (Ln). That latent hypothesis is implicitly defined based on primi-
tives which correspond to a single hypothesis h at some higher level Ln+1. In principle, the number of levels could
extend further in either direction.
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another facet of the same problem with Fodor’s argument that we have seen already: our
inability to decompose concepts into other concepts does not imply that they must all be
innate, except in the most trivial and uninteresting sense of the word ‘‘innate’’ (i.e., the
system has the representational capacity to capture them).

So far I have suggested that Bayesian modeling makes clear how it may be possible to
have true learning even when a hypothesis space is fully pre-specified – indeed, I argue
that a pre-specification of a latent hypothesis space is necessary for learning. The next sec-
tion briefly discusses some of the implications of this reasoning.

4. Additional Implications

If the notion of ‘‘learning’’ as ‘‘discovering something that was not built into the latent
hypothesis space’’ is incoherent, then every learning system – including the brain – must
come equipped with a latent hypothesis space consisting of everything that it can possibly
represent. In some respects this is not a controversial point, but it is an easy point to for-
get when evaluating Bayesian models: the fact that hypothesis spaces are clearly defined
within the Bayesian framework makes them appear more ‘‘innate’’ than if they were sim-
ply implicit in the model. But even neural networks – which are often believed to pre-
sume very little in the way of innate knowledge – implicitly define hypotheses and
hypothesis spaces via their architecture, functional form, learning rules, etc. In fact, neural
networks can be viewed as implementations of Bayesian inference (e.g., Funahashi 1998;
McClelland 1998), corresponding to a computational-level model whose hypothesis space
is a set of continuous functions (e.g., Funahashi 1989; Stinchcombe and White 1989)
This is a large space, but Bayesian inference can entertain hypothesis spaces that are
equivalently large.

If any model, including the brain, is equipped with a latent hypothesis space defined
by its primitives and rules, doesn’t this imply that the best way to study the brain is by
seeking to understand those primitives and rules? In the brain, investigating the primitives
would correspond to investigating the neuronal level. However, the primitives used in
most Bayesian models (so far) do not consist of anything that looks like neurons; they are
instead usually chosen for their mathematical elegance and ability to produce solutions
that seem well-matched to the learning problem. Does this not suggest that Bayesian
modeling is fundamentally approaching the issues from the wrong direction?

This question is a topic of much debate in cognitive science (Griffiths et al. 2010;
McClelland et al. 2010). My view, and that of many computational modelers, is that both
directions are necessary. That said, there are several reasons why a computational-level
approach may be useful. First, we currently have very little idea about how the actual
primitives of the brain combine to form anything approaching conceptual knowledge.5

Models that build in primitives and explore what emerges are useful for showing that
something can be learned by neurons with those characteristics – but it can be difficult to
interpret what precisely was learned or why. Furthermore, it is not even clear that we
could learn how the primitives underlie conceptual knowledge without having some
sense of what that conceptual knowledge is. Bayesian modeling focuses on that critical
question, seeking to characterize the abstract nature of the problems facing the learner,
what representational abilities the learner must have in order to deal with those problems,
and what a good solution would look like. It is true that Bayesian models assume that
the way in which the brain realizes those representations is at least somewhat irrelevant to
answering questions on the computational level, but if this assumption is incorrect, the
best way to realize that is to develop the models and see where they fail and why.
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On a more general level, because all models implicitly define a hypothesis space, it
does not make sense to compare models according to whether they build hypothesis
spaces in. More interesting questions are: What is the size of the latent hypothesis space
defined by the model? How strong or inflexible is the prior? (All models and learners that
generalize at all, not just Bayesian ones, define a prior: even the assumption that all
hypotheses are equally likely is a prior of its own.) A model that compares two hypothe-
ses is far more restrictive (i.e., builds far more in) than a model that compares all possible
Gaussians; a model that places high prior probability on one specific hypothesis builds
more in than one that ‘‘spreads’’ probability mass evenly over many. Although it is
straightforward to compare Bayesian models according to these metrics, it is more diffi-
cult to compare models in which the priors and hypotheses are implicit in the architec-
ture or learning rule. Nevertheless, these are precisely the questions that should be asked.

The notion of a hierarchy of hypothesis spaces illuminates another way in which a
model might build very little in: by simultaneously searching over hypotheses on multiple
levels. All things being equal, searching in higher-level spaces opens up many additional
hypotheses on lower levels and can result in hypotheses that look extremely novel on that
level (just as adding a Cyrillic keyboard would make the resulting documents appear very
novel relative to any English ones). Bayesian models that search over multiple levels of
hypotheses are called hierarchical Bayesian models, and are increasingly common (e.g.,
Lee 2006; Kemp et al. 2007; Heller et al. 2009; Kemp et al. 2010; Perfors et al. 2010;
Perfors et al. 2011b). For instance, a hierarchical version of the model in the Gaussian
example might compare different higher-level hypotheses about the shape of the distribu-
tion (Gaussian, multinomial, etc). The modeler would specify how the likelihoods and
priors for each distribution type would be calculated and the model would evaluate
which specific distributions of each type best captured the data, as well as which distribu-
tion type itself was best. Knowledge is still built in, but the hypothesis space is much lar-
ger and the constraints built into the model are weaker. One interesting and unexpected
outcome of these models is that successful learning in such spaces does not necessarily
require more data than learning in smaller spaces (Kemp et al. 2010; Perfors et al. 2011b).

There is one other important respect in which Bayesian models have implications for
innateness. In many Bayesian models, adequately sampling from a hypothesis space is a diffi-
cult technical problem, but is not the cognitive problem of interest; the goal is to identify
the hypotheses with the highest probability, derive predictions on that basis, and ascertain
how well that matches up with human behavior. This ‘‘ideal learning’’ approach is helpful
for identifying what optimal6 behavior would look like, given the data and the assumptions
made explicit in the model. This is useful in two ways: first, by examining models that
incorporate different assumptions, or given different data, we can rigorously investigate the
effect of those assumptions or that data. Second, by comparing model performance to
human behavior, we can investigate to what extent to what extent human learning can be
understood as optimal performance – and, if it falls short, in what ways it does so.

However, there is another sense in which we might want to investigate the learnability
of some knowledge: can a learner efficiently search the hypothesis space and find it? If
this is the question, then suddenly many details matter. Where in the hypothesis space do
searches begin? How long does it take to search efficiently? How is the search done?
Although still in its infancy, some research within the Bayesian framework is beginning
to address these kinds of questions. Rational process models attempt to capture different
sorts of capacity constraints or resource limitations by limiting the breadth or extent of
the search of the hypothesis space (e.g., Levy et al. 2008; Vul et al. 2009; Sanborn et al.
2010). Some models also investigate the effects of different types of memory constraints
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on what inferences become favored (Perfors 2011) or what sort of representations are
sensible (Navarro and Perfors 2011). It remains to be seen to what extent the possibilities
that are easy to capture within the Bayesian framework correspond to the limitations peo-
ple actually have, but this is a promising area for further research.
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* Correspondence: Level 4, Hughes Building, University of Adelaide, Adelaide, SA 5005, Australia. Email: amy.
perfors@adelaide.edu.au.

1 Special issues of two journals have been devoted to Bayesian modeling (Cognition 120, 2011; Trends in Cognitive
Science 10.7, 2006). See also Griffiths et al. (2010); McClelland et al. (2010), and Jones and Love (2011) and replies
for additional papers exploring some of the fundamental issues involved in interpreting and applying these models.
2 Perfors et al. (2011a) contains a more thorough overview.
3 Note that the latent hypothesis space does not need to be completely enumerated in order to exist; it must simply
be defined by some sort of process or procedure. In the case of Bayesian models, that process is the generative
model for the data, from which the priors and likelihoods are defined. As noted earlier in practice, exhaustive
hypothesis enumeration is intractable for all but the simplest models; most perform inference via guided search, and
only a subset of the hypotheses within the space are actually evaluated.
4 It is of course possible to define hypotheses that do not serve as primitives in any lower-level spaces. However,
the reverse is not true: the primitives of any space can be viewed as one of many hypotheses in a higher-level
space.
5 Connectionist models only loosely approximate the behavior of neurons in the brain.
6 Bayesian reasoning is ‘‘statistically optimal’’ in the sense that a non-Bayesian reasoner attempting to predict the
future will always be out-predicted by a Bayesian reasoner in the long run (de Finetti 1980). As a first approxima-
tion, just as formal logic describes a deductively correct way of thinking, Bayesian probability theory describes an
inductively correct way of thinking. For further discussion of these issues please see Jeffreys (1931, 1939); Cox
(1946, 1961); Jaynes (2003).
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