Supplementary Information

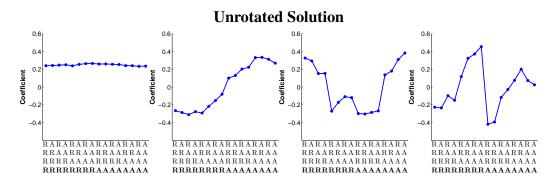


Figure 1: Unrotated latent structure. Coefficient patterns of the four first components extracted with PCA, before rotation. From left to right, components are ordered by amount of variance explained: 78%, 12%, 5% and 1.26%; variance explained by the remaining components goes 1.03%, 0.59%, 0.36%,...,0.07%. The first component is clearly interpretable the effect of overall individual mean RT; the second and third components - C2 and C3 - can be interpreted as the effects of the last and second-to-last events respectively; the fourth component exhibits an approximate dependence on the second-to-last independently of the last event, visible as an overall similarity between the left and right halves of the plot.

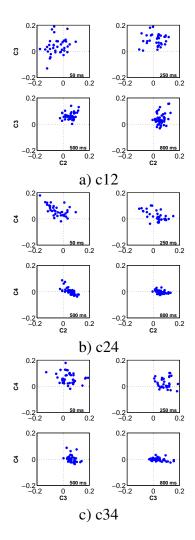


Figure 2: Individual scores for all 158 participants on the three latent components related to sequential effects.(a)-(b) panels with scores on one particular component plotted against those on another component. Within each panel, individual RSI subgroups are plotted separately. Details of how the scores were calculated are detailed in the text. Note that the scores were those obtained from the global PCA analysis including all participants. Note that, for a 500 and 800 ms RSI, most subjects have a score on C4 close to zero, reflecting the absence of this component for long RSI values (panels (b) and (c)). In addition, note the correlation between C2 and C4 score for low RSI (middle panel, 50 and 250 ms subgroups). Finally, observe the single subject which exhibits a significantly negative score on both C2 and C3 (top panel, 50 ms subgroup); note that the good qualitative nature of the fit to this subject (not shown) is indicative that these negative scores may not be spurious. In other words, it might be possible - yet rare - to have a negative score on both C2 and C3.

Recalculation of component scores

Under normal circumstances the PCA model's prediction for the j-th individual is obtained through $\mathbf{x_j} = \boldsymbol{\mu} + \sum_{i=1}^{N} s_i^j \mathbf{C_i}$, where $\boldsymbol{\mu}$ is the grand mean array, N is the number of components retained, $\mathbf{C_i}$ is the coefficient pattern for each component and s_j^i is the the score of subject j on component i. If we replace the grand mean with a simple constant, our model becomes $\mathbf{x_j} = b_j + \sum_{i=1}^{N} s_i^j \mathbf{C_i}$, with b equal to individual overall mean RT. If we further discount the mean RT by subtracting it from each individual, we can set the baseline RT at zero for all subjects, in which case our model further reduces to $\mathbf{x_j} = \sum_{i=1}^{N} c_i^j \mathbf{V_i}$, where the notation has been changed to highlight the fact that the scores are now linear coefficients and the coefficient patterns simply vectors equal to the coefficient patterns identified with PCA. Individual scores will be estimated by fitting a linear combination of coefficient patterns to each individual's data with the overall mean subtracted. As expected, the linear coefficients thus obtained are almost perfectly correlated to the scores obtained with PCA (r = 0.92, r = 0.97 and r = 0.89 respectively for C2, C3 and C4, p < < 1e - 3 in all cases). It is to these linear coefficients that we refer throughout as individual 'scores'.

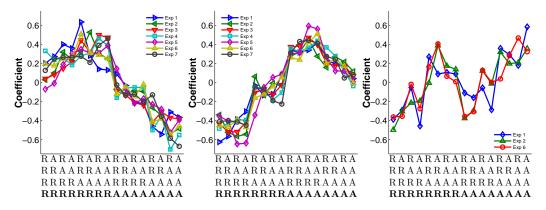


Figure 3: Coefficient patterns obtained by performing a PCA on different subgroups of participants performing different experiments. Plots show, from left to right, C2, C3 and C4. All experiments considered (1 through 7) yielded a C2 and C3 significantly similar to those obtained in the global analysis including all subjects. Only experiments 1, 2 and 6 yielded a C4 significantly similar to the global components. The reason for this is probably the small number of participants in each subgroup together with the fact that C4 explains a relatively small amount of variance. Together, these results clearly indicate that the latent structure obtained with the global analysis is not an artifact of grouping different experiments.

Invariance of latent structure with RSI and Experiment

The non-standard approach of analysing data from multiple experiments together might raise concerns regarding whether the latent structure is constant across conditions. For instance, it would be possible in principle for a component to be present exclusively in one experiment in which case our results would be an artefact of mixing qualitatively different results. In order to dispel these doubts extra care was taken to demonstrate that the latent structure of sequential effects is invariant with respect to both RSI as well as experimental design. This is particularly relevant in the case of different RSI values, given the prevalent view that short and long RSI sequential effects are qualitatively different. In order to evaluate how the latent structure varies, the same analysis which was conducted for all subjects together will be performed in different subgroups separated according to RSI, irrespective of experiment, and according to experiment performed, collapsing across RSI. Different latent structures were obtained, one for each subgroup,

and four components were retained each case. It was then necessary to evaluate whether these components were the same as the ones in the global pool of subjects, and this was done with recourse to Tucker index of similarity [2] according to the following procedure: the index was calculated between all putative components of the same type (say C1), one at a time, and the global corresponding component (C1 in this case), and similarly for the remaining three components. The significance of the calculated coefficient values was assessed by holding one vector fixed and randomly permuting the other, allowing a p value to be estimated [1].

Figure																
3	32	47	58	65	65	53	64	68	62	62	54	73	56	45	71	55
3	39	46	55	52	83	75	65	53	50	60	53	59	55	49	59	60
3	54	48	68	50	74	80	116	93	50	72	72	76	79	101	97	105
3	31	39	40	52	55	64	76	58	42	36	56	48	68	73	63	61
3	43	37	46	48	38	48	41	50	58	57	52	51	44	36	44	35
3	35	42	43	39	52	61	51	67	50	49	53	44	73	61	61	67
9	44	46	46	36	39	41	38	35	57	58	78	78	69	32	34	39
9	60	84	86	84	74	90	94	112	68	79	102	102	96	109	101	85
9	27	26	44	45	50	56	39	52	74	55	48	56	52	51	45	48
10	43	37	53	45	42	52	55	54	60	62	57	58	41	45	52	53
10	68	60	76	72	91	90	98	93	27	49	127	63	156	98	118	112
11	58	59	82	84	114	150	104	101	43	85	82	96	91	112	112	106
11	45	54	61	66	85	114	76	77	47	50	58	100	69	66	72	70
11	38	49	50	49	62	69	91	92	53	79	78	89	111	118	130	113

Table 1: Standard deviation values for all the individual subjects shown in the main text. Columns are the 16 variables (i.e. sequences) as ordered in the plots throughout. Subjects are ordered from top to bottom on the table as they are shown on the article from left to right.

Figure																
3	153	1057	652	763	542	1060	481	71	211	112	95	577	923	723	632	943
3	408	927	1135	1011	717	683	536	753	38	392	105	712	569	747	1173	1215
3	1772	906	1217	497	907	1371	1442	912	175	332	-10	390	756	467	1223	1146
3	420	496	541	978	759	1036	1137	500	294	442	948	693	882	561	773	587
3	535	565	501	8	211	217	391	52	-111	127	335	510	613	768	1057	826
3	598	355	580	729	482	745	633	760	549	838	666	546	799	459	715	685
9	-584	-400	255	-46	860	318	403	552	736	631	1059	1110	1328	67	69	317
9	1323	948	1040	627	481	703	734	1185	858	892	739	466	268	657	698	788
9	563	459	912	669	255	578	526	923	786	381	287	769	302	896	470	571
10	383	131	537	492	553	655	1128	85	575	955	657	351	456	-24	511	-380
10	786	1007	1191	653	1549	909	-8	203	-19	-330	1081	822	804	-15	101	931
11	786	951	818	961	955	700	1066	485	458	1192	913	1757	725	768	812	1028
11	395	650	586	605	1664	986	950	908	823	1053	971	876	1241	848	901	741
11	136	604	579	1022	881	929	934	880	486	522	513	896	587	446	556	705

Table 2: Skewness values for all the individual subjects shown in the main text. Columns are the 16 variables (i.e. sequences) as ordered in the plots throughout. Subjects are ordered from top to bottom on the table as they are shown on the article from left to right.

Figure																
3	3206	4028	2757	2630	2722	4239	2673	2123	2920	2564	2289	2607	3336	3126	2531	3312
3	2604	3732	4027	3697	2710	2796	2677	3092	2094	2523	2291	3506	2592	2887	3994	4079
3	6648	3602	4180	2379	3093	5099	5267	3500	2566	2614	2735	3322	3507	2626	4303	3803
3	2807	2691	2790	3230	3100	3988	3841	2701	2530	2448	3837	3556	3218	2876	4041	2933
3	3450	2774	2364	2819	2915	2721	2342	2200	1981	1857	2407	2670	2621	3249	3556	3434
3	3012	3060	3077	3527	2637	3728	3107	2977	3035	3379	2890	2713	3071	2937	3335	3321
9	3143	2512	4403	2829	3740	2489	3970	2847	3102	3176	3271	3433	6673	3100	2603	7516
9	5314	2931	3801	2924	2549	3549	3141	3870	3470	3356	2611	2634	2344	2590	2553	2798
9	3474	3283	3484	2899	2222	3479	2953	3500	3499	2811	2342	3509	2257	4249	2916	2827
10	2811	2967	2661	2891	3323	3674	5717	3002	4344	6469	4623	4592	4660	3566	3147	4112
10	2475	2914	4748	2270	4695	3401	2142	2125	1867	2622	4696	2409	3826	3253	2495	4720
11	3251	3516	2800	3628	3010	2537	3219	2556	2661	3903	3205	6894	2651	2866	3087	3719
11	2317	2664	2861	2917	6067	3065	3215	3421	3947	4572	3634	2920	4436	3823	4066	2903
11	3092	3995	3708	4449	4519	4199	3374	3000	2328	2597	2805	3189	2805	2477	2547	3053

Table 3: Kurtosis values for all the individual subjects shown in the main text. Columns are the 16 variables (i.e. sequences) as ordered in the plots throughout. Subjects are ordered from top to bottom on the table as they are shown on the article from left to right.

Figure																
3						71										
6	84	85	86	81	90	112 83 76	100	104	67	75	89	100	113	134	147	145
6	64	63	68	69	72	83	79	83	70	74	89	86	99	107	105	102
6	56	62	64	67	72	76	76	78	79	80	82	81	85	82	83	79
6	55	56	61	62	68	71	69	69	78	78	82	78	78	77	76	71

Table 4: Standard deviation values for all the groups of subjects shown in the main text. Columns are the 16 variables (i.e. sequences) as ordered in the plots throughout. Groups of subjects are ordered from top to bottom on the table as they are shown on the article from left to right.

Figure																
3	685	627	673	744	742	870	806	582	316	444	424	427	566	594	609	717
6	1880	1889	1204	1141	1191	1806	1802	854	1189	1341	1339	1368	1387	1506	1705	1960
6	-106	-120	260	280	447	1006	882	848	559	459	790	523	853	892	1116	1178
6	889	976	967	990	932	981	1314	1307	670	802	872	822	843	1030	1050	1339
6	523	596	975	1027	1128	1106	1549	919	954	947	1221	989	1080	1303	1343	955

Table 5: Skewness values for all the groups of subjects shown in the main text. Columns are the 16 variables (i.e. sequences) as ordered in the plots throughout. Groups of subjects are ordered from top to bottom on the table as they are shown on the article from left to right.

Figure																
3	3667	3268	3313	3212	3024	3619	3290	2965	2798	2951	2771	2927	2978	2880	3383	3254
	11223															
	4231															
	5490															
6	4070	6173	5051	5390	5086	5093	8515	4540	4107	4219	5190	4225	4492	5946	5656	4375

Table 6: Kurtosis values for all the groups of subjects shown in the main text. Columns are the 16 variables (i.e. sequences) as ordered in the plots throughout. Groups of subjects are ordered from top to bottom on the table as they are shown on the article from left to right.

Figure	Mean	Stand. dev.
3	0.94	0.02
3	0.92	0.04
3	0.92	0.03
3	0.91	0.04
3	0.91	0.03
3	0.94	0.03
9	0.95	0.02
9	0.90	0.04
9	0.93	0.03
10	0.83	0.06
10	0.92	0.04
11	0.88	0.05
11	0.90	0.04
11	0.95	0.02

Table 7: Reliability of the results of all individuals shown in the main text. Subjects are ordered from top to bottom on the table as they are shown on the article from left to right. Split half reliability was used: data was was randomly split into two halves resulting in two different sequential effects patterns and the correlation coefficient between the two was calculated. Values shown are the mean and standard deviation of the correlation coefficients obtained from 100 iterations of the split-half procedure.

Figure	Mean	Stand. dev.
3	0.9720	0.0109
6	0.9946	0.0024
6	0.9942	0.0025
6	0.9914	0.0036
6	0.9910	0.0033

Table 8: Reliability of the results of all groups of subjects shown in the main text. Subjects are ordered from top to bottom on the table as they are shown on the article from left to right. Split half reliability was used: data was was randomly split into two halves resulting in two different sequential effects patterns and the correlation coefficient between the two was calculated. Values shown are the mean and standard deviation of the correlation coefficients obtained from 100 iterations of the split-half procedure.

References

- [1] Hervé Abdi. Rv coefficient and congruence coefficient. *Encyclopedia of measurement and statistics*, pages 849–853, 2007.
- [2] Richard L Gorsuch. *Factor analysis*. L. Erlbaum Associates, Hillsdale, N.J., 1983.