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Background

Many real networks exhibit parts that are more tightly connected than others. The
goal of network clustering is to identify clusters with members that are more strongly
inter-connected than connected to the rest of the network. The resulting solution
should thus exhibit denser interconnectivy within clusters than between clusters.
Network clustering is a promising technique that only recently has allowed us
to investigate large-scale directed and weighted graphs. At the same time it is
notoriously complex and a single metric to determine the structure in a graph is
unlikely to be applicable to any kind of graph (see the extensive review of the
state-of-the-art in Fortunato, 2010). However, at the moment of writing the Order
Statistics Local Optimization Method (OSLOM) leads to superior results on directed
graphs and the detection of strongly overlapping clusters, which makes it particularly
suited for the study of graphs derived from word association data. Below we provide
an informal summary of how this algorithm works, but refer to the original article
(Lancichinetti, Radicchi, Ramasco, & Fortunato, 2011) for full details.

The key feature of OSLOM in comparison to other approaches is that it uses the
significance of a cluster to evaluate the fitness of this cluster. This is operationalized
by the probability of finding the cluster in a random null model that does not
exhibit a clustered structure. The random model employed by OSLOM is the
directed weighted extension of the configuration model (Radicchi, Lancichinetti, &
Ramasco, 2010). In contrast to some other approaches, the algorithm works locally,
meaning that it starts by evaluating a single vertex randomly selected from the graph.
Next q vertices are added to it, where q is taken from a power law distribution,
and the resulting cluster is then evaluated. This procedure is repeated many times,
resulting in a final set of clusters that may overlap. The algorithm stops when it
keeps finding similar clusters over and over. In a next step, cluster merges are
determined by evaluating whether the subgraphs composed of the candidate merged
clusters are considered distinct compared to the null-model or not.
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Any iteration of the algorithm involves three main loops:

1. Analyze a single cluster and iteratively add or remove nodes to/from this
cluster depending on a fitness score (outlined above) calculated for all nodes.

2. Check which clusters can be grouped together and determine a set of stochas-
tic covers (i.e., overlapping clusters).

3. Derive a higher hierarchical solution using a new network obtained through
previous steps.

Full technical details of the OSLOM algorithm are available in Lancichinetti et
al. (2011) and Radicchi et al. (2010). The software for implementing OSLOM can
be freely downloaded at http://www.oslom.org/.

Application

Initial clustering solutions

Initial clustering solution. One of the benefits of OSLOM is that clustering solutions
found by other algorithms can be evaluated together with the clusters found by
OSLOM. When clusters obtained through other algorithms are available, we can
evaluate their fitness as the likelihood of such structure to arise in the appropriate null
model similar to the way OSLOM evaluates its clusters. In addition, using additional
solutions obtained through other techniques often speeds up the computation time.

In the accompanying article we followed this practice and clustering was per-
formed by using solutions derived from five iterations of Infomap (Rosvall &
Bergstrom, 2008), two iterations of COPRA (Gregory, 2010) and one iteration of
the Louvain algorithm (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008). The
choice of these algorithms was based on the fact that they operate on large graphs
and implementations of them are freely available and bundled with the original
OSLOM software.

Parameters

Two parameters govern the results of OSLOM: p and cp. About these parameters
the authors write (see Lancichinetti et al., 2011, page 4):

The influence of the parameter values is however relevant only when
the community structure of the network is not pronounced. When
clusters are well defined, the results of OSLOM do not depend on the
particular choice of the parameter values.

Coverage Parameter. The coverage parameter cp determines whether clusters
are to be joined together or not. It was left unchanged at the default value of 0.50.
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p-threshold. The significance threshold p was set at 0.25 for the reported
solution, which is higher than the standard 0.1 used throughout the evaluation in
Lancichinetti et al. (2011). As indicated by Lancichinetti et al. (2011), increasing
the value of p results in more clusters as smaller clusters are more easily considered
significant. In practice we found that varying p does lead to slightly different results
at the highest hierarchical levels. Here the value for p was piloted by seeing if
the clusters with the largest p-values had a clear interpretation. This follows the
suggestion in Lancichinetti et al. (2011) on page 14:

The actual resolution of the method is thus not due to the null model,
but to the choice of the threshold p. In this paper we have set p =
0.1, which is often used in various contexts and delivers excellent
performance on the benchmark graphs we have adopted. Nevertheless
how much a real graph deviated from a random graph depends on the
specific system at hand, and it would be more appropriate to estimate
the threshold p case by case.

Clearly, a more principle approach to study the effect of different settings for p
is something for future consideration.

Computation

Similar to other community detection techniques with a stochastic character, more
accurate results are achieved through many iterations and are mostly determined
by the size of the graph and the time available for computations. The number of
iterations at the lowest level was set to 100 (default value was 10), whereas the
number of runs to determine higher hierarchical levels was kept at the default (50).
This resulted in a computation time around 3 to 4 hours on a 32GB Ram Intel®

Core™ i7-2600K 3.40GHz Linux workstation.
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