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Abstract

I address two questions that underlie most of the articles in this special issue: 1) What do different levels of explanation in psychology
reveal? And 2) how do the dynamics of science affect what can be learned? I suggest that understanding hypothesis testing and
generation in the abstract can provide a useful framework for understanding how cognitive modelling and neuroscience may interact.
I further suggest that the preference for simple explanations and the dynamics of hypothesis testing may play out in different ways
within the two fields, and that their overlap may prove most useful in the realm of hypothesis generation.
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INTRODUCTION

What can neuroscience tell us about questions in cognitive

science? How do—and how should—neuroscience and cog-

nitive modelling interact with each other? These questions,

which are the focus of this special issue, can be distilled to

more precise queries. First, what do particular studies, find-

ings, or approaches in neuroscience have to say about topics

in cognitive science? Second, what does (or can) neuro-

science as a field say to cognitive science? Third, more

broadly, what is the relationship between explanations that

occur at different levels or that use different methodologies?

What can they say to each other, and in what situations?

Finally, for all of these questions, how are they affected by

the dynamics of the process of scientific inquiry?

Most articles in this issue focus, as they should, on the

first two questions—on specific experiments or situations in

which neuroscience and cognitive modelling give explana-

tions that are either contrasting (Kalish & Dunn, 2012;

Lewandowsky, Ecker, Farrell, & Brown, 2012) or comple-

mentary (Brown, Forstmann, & Wagenmakers, submitted;

de Zubicaray, 2012). I will be focusing mainly on the third

and most abstract question, though I will also touch on the

second when warranted. My goal with this article is to offer

a commentary about the forest rather than the trees, and to

present some (hopefully thought-provoking) ideas, not to

communicate polished conclusions. As such, there is a lot of

speculation and few ironclad results.

The plan for this article is as follows. I begin by sketching

a basic framework for understanding the process of scientific

inquiry as a process of hypothesis generation and testing.

This framework forms the backdrop for consideration of

three questions that arise, whether explicitly or implicitly,

upon consideration of the relationship between neuro-

science and cognitive science. The first two centre on

hypothesis testing. First, how should a rational reasoner

evaluate theories, and how does this relate to how people

actually evaluate them? What sort of explanations feel ‘good’

to us, and why? I posit that people’s differential willingness

to accept cognitive and neuroscientific explanations may

have to do with our intuitive notions of simplicity and

elegance. Second, what kinds of tests are the most effective

and efficient ways to identify correct theories or hypotheses?

I present preliminary research that suggests that the answer

may depend on the ‘newness’ of the field or question being

asked. Since cognitive modelling and neuroscience differ in

this respect, it may be one reason for apparent differences

between the ways each field operates. Finally, I will consider

hypothesis generation, arguably one of the most difficult

aspects of science. I suggest that, even if two fields to scien-

tific inquiry are otherwise incommensurate (which may or

may not be the case with cognitive science and neuro-

science), their interaction can still be beneficial, because it

may assist in hypothesis generation.

A FRAMEWORK FOR SCIENTIFIC INQUIRY

The goal of any scientific pursuit is to identify—out of all

possible hypotheses or theories purporting to explain the

world—which hypothesis is most correct. We can concep-

tualise this pursuit with a slightly bizarre but illuminating
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example involving number rules, loosely inspired by similar

tasks like the ‘number game’ in Tenenbaum and Griffiths

(2001) or the 2–4–6 task of Wason (1960). Imagine that we

are radio astronomers who start receiving a series of signals

from a distant galaxy. Every 20 hours, we receive a new

signal consisting of a single number. After 60 hours, we have

received a 10, a 50, and a 30. Our goal as scientists is to

determine what generative process has resulted in this series

of numbers: Is there an underlying rule of some sort? Are

the numbers completely random? Are they being sent by

aliens bent on world domination, or are they the result of

some natural phenomenon, like a pulsar?

The process of answering these questions involves two

components: hypothesis testing (evaluating our hypotheses

about the answers to these questions against each other) as

well as hypothesis generation (identifying hypotheses to

test in the first place). We can call the set of hypotheses

the hypothesis space, denoted H and shown schematically in

Fig. 1. Since most of the time we cannot explicitly list (nor

do we even know) all of the hypotheses we could possibly

test, it is important to make a conceptual distinction between

two types of hypothesis spaces. The latent hypothesis space

corresponds to all logically possible hypotheses—in this case,

all possible number rules, from the trivial (ALL NUMBERS,

EVEN NUMBERS) to the totally bizarre (NUMBERS CONTAINING

AT LEAST ONE DIGIT TOPOLOGICALLY IDENTICAL TO A DONUT).

This differs from the set of hypotheses we have explicitly

identified for testing, which we might call the explicit hypo-

thesis space. In our example, it includes the hypotheses we

the scientists have identified to test (like EVEN NUMBERS) but

not the ones that are so bizarre they never occur to us (like

the one about digits with certain topologies).1

Under this conceptualisation, hypothesis generation con-

sists of moving hypotheses from the latent to the explicit

hypothesis space. This is a hard problem about which rela-

tively little is known with much certainty. Much more is

known (or at least theorised) about hypothesis testing;

indeed, it is common within the philosophy of science to

frame the process of hypothesis testing as a type of Bayesian

reasoning (e.g., Howson, 2001; Jaynes, 2003). Under this

view, the probability of some hypothesis hi is a function of its

prior probability (denoted P(hi)), and the probability that

one would see the observed data if the hypothesis were true

(denoted P(d|hi)). These terms combine to form Bayes’ Rule:

P h d
P d h P h

P d h P h
i

i i

j jhj

|
|

|
( ) = ( ) ( )

( ) ( )∈∑ H

(1)

Altogether, this simple Bayesian framework provides a

useful tool for formalising and conceptualising the questions

that arise in this special issue, as we will see in the next

sections.2 A Bayesian perspective is advantageous both

because it provides a rigorous and clear explanatory frame-

work in which to conceptualise otherwise somewhat fuzzy

issues, but also because Bayesian reasoning is ‘optimal’ in

a specific mathematical sense (see Perfors, Tenenbaum,

Griffiths, & Xu, 2011 for further discussion of this issue).

However, it does have its shortcomings, most notably that

the calculations underlying Bayes’ Rule are only possible

over a set of explicitly enumerated hypotheses. This has two

implications of interest here. First, it does not address one

of the most difficult problems in science, which is defining

the relevant hypothesis spaces and/or reasoning within

ill-defined hypothesis spaces. We can still talk about these

problems in the abstract, which I do towards the end of the

article, but it does put a severe limitation on our ability to

apply formal solutions to them. Second, although data can

rule out hypotheses that are not being explicitly considered

(presuming the learner can remember that data once the

hypotheses move into explicit consideration), the probability

of different hypotheses can be calculated using Bayes’ Rule

only relative to the others under consideration. This is an

important issue in hypothesis testing, which I consider next

in light of the issue of what makes a good explanation.

FAVOURING SIMPLER EXPLANATIONS

Consider the three numbers we radio astronomers have

received so far: 10, 50, and 30. These numbers are consistent

with several hypotheses, including MULTIPLES OF 10 and

MULTIPLES OF 5, among others. Since both hypotheses can

explain the same data, why might we—or any Bayesian

reasoner—prefer one of these hypotheses over another?

There is some evidence that simplicity considerations play a

Figure 1 Schematic illustration of latent and explicit hypothesis
spaces. A latent hypothesis space consists of the set of all logically
possible hypotheses that could be explanations for a given question.
The explicit hypothesis space is the set of explicitly identified
hypotheses, which are the ones available for hypothesis testing.
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role: all other things being equal, people tend to prefer

simpler hypotheses (Lombrozo, 2007).

But what does ‘simpler’ mean? In practice, there are two

kinds of simplicity: making more precise predictions, or

having fewer parameters. Both of these matters to people,

and both emerge naturally from a Bayesian reasoning

framework (though it is an open question the degree to

which people’s assumptions map directly onto Bayesian rea-

soning). I’ll talk here about both kinds of simplicity, starting

with the former. The goal is to explain why it is sensible to

evaluate hypotheses based on this sense of simplicity. Then

I’ll discuss how this might relate to evaluating theories in

neuroscience and cognitive science.

Simplicity as precision

One idea is that simpler hypotheses are those that make

more precise predictions. ‘Precision’ here should be taken to

mean how closely a prediction matches an outcome. If, as

in the numbers example, we assume that all allowable out-

comes are equally likely, then precision is inversely propor-

tional to the number of outcomes the theory predicts. This

implies that a hypothesis consistent with a small number

of possible data points is more precise than one that is

consistent with many. For instance, MULTIPLES OF 10 is more

precise than MULTIPLES OF 5: there are half as many numbers

consistent with MULTIPLES OF 10 than MULTIPLES OF 5. If we

know that numbers are constrained to be within a certain

range, say from 0 to 100, then we can calculate this differ-

ence in precision: the probability of randomly drawing, say,

a 50 from the rule MULTIPLES OF 10 is 1/10 (because there are

10 multiples of 10 between 0 and 100), but the probability of

drawing it from MULTIPLES OF 5 is only 1/20.3 In this case, the

explicit probabilities support the intuition most people have:

MULTIPLES OF 10 seems like a better explanation of 10, 50,

and 30 than does MULTIPLES OF 5.

This notion of precision4 is discussed in some detail by

Roberts and Pashler (2000), although not by name. They

make the distinction between goodness of fit (which mea-

sures the extent to which a theory captures the observed data)

and the likelihood of other outcomes under the theory. Their

sense of goodness of fit is not precision: for example, both

MULTIPLES OF 10 and MULTIPLES OF 5 fit all of the data points.

Rather, precision is analogous to the likelihood of other

outcomes under the theory—or, equivalently, the extent to

which the theory constrains the data one should expect. A

theory like MULTIPLES OF 10 is more constraining and there-

fore more precise than MULTIPLES OF 5; for this reason, Roberts

and Pashler (2000) argue it should be preferred over one that

happens to fit the data, but only because it can fit any data.

A preference for more precise hypotheses is built into the

likelihood and emerges naturally from the laws of probabil-

ity (Jaynes, 2003; Jeffreys, 1939; MacKay, 2003). Sometimes

called the ‘Bayesian Ockham’s Razor’, it reflects the fact that

probabilities must sum to one. Thus, if there are more data

points to divide the total probability mass over, any indi-

vidual data point will have less probability for itself. This

provides a formal justification for why theories that are

consistent with any (or many) outcomes should be dispre-

ferred: if a theory is consistent with many things, then

being consistent with any specific outcome is not very strong

evidence for that theory.

What does this have to do with neuroscience? Several of

the other articles in this special issue (e.g., Kalish & Dunn,

2012; Lewandowsky et al., 2012) identify instances where

the neuroscientific theory is difficult to falsify, because it can

be made consistent with any observed pattern of data. This is

indeed a problem with the theory in question, but it is not a

problem (as far as I can tell) specific to neuroscience: it is a

mark of poor science in general. If neuroscientific hypotheses

by their nature are more difficult to make precise, then these

case studies would indeed be an indictment of the entire

field—or at least a suggestion that neuroscientists should take

more care when formulating their theories. If they are not,

then it is an indication that it is possible that poorly specified,

imprecise theories are bad science wherever they are found.

Simplicity as fewer parameters

There is, of course, another notion of simplicity, as a

moment’s thought will make clear. If hypotheses were pre-

ferred only on the basis of their precision, then we should

always favour the hypothesis that included only the observed

data; in the example above, we should think that the correct

hypothesis is just THE NUMBERS 10, 30, AND 50. Most people

do not do this, probably because hypotheses like this have

low prior probability—we don’t automatically and intuitively

think that this hypothesis is a priori reasonable. In Bayesian

terms, prior probability reflects, at least in part, the ease of

describing it in the representation language used: hypotheses

that have longer descriptions, or require more ‘choices’ in the

description language, have lower prior probability.5 In the

number rule example, both MULTIPLES OF 10 and MULTIPLES

OF 5 might have higher probability, because the concept

of ‘multiple’ is an elementary concept in most people’s

representation of number. By contrast, the hypothesis THE

NUMBERS 10, 30, AND 50 is effectively a concatenation of three

elementary concepts (the three specific numbers involved),

and is thus more complex. Although this can be captured

within the Bayesian framework (Perfors et al., 2011), the

important thing for our purposes is simply to note that both

kinds of simplicity exist and have a formal justification.

Although there are some subtleties, it is relatively straight-

forward to incorporate this sort of intuitive simplicity into a

prior probability in a context like the number rules example.

However, in the real world—where real humans have to
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make judgments about much more complex hypotheses—

doing so is a highly non-trivial problem. It becomes espe-

cially problematic if people must evaluate hypotheses in a

field in which they are not an expert. For instance, Weisberg,

Keil, Goodstein, Rawson, and Gray (2008) found that non-

experts tended to confuse bad explanations for good ones

when the explanations made reference to neuroscience but

that experts were not similarly led astray. These results have

many possible explanations, but one is that experts are well

calibrated about how simple neuroscientific explanations

really are (which is to say, generally not very simple). This

stands in contrast to folk psychological theories of the mind,

which are often of the form ‘X part of the brain is responsible

for Y behaviour’. Given this folk theory, an ‘explanation’

consisting of a picture of a brain with one part lit up, or a

naming of the location where activity was found, does in fact

feel satisfying, even though it actually explains very little.

If it is indeed the case that part of the allure of neuro-

science relates to how our folk theories evaluate the sim-

plicity of neuroscientific hypotheses, then it does suggest

a distinction between neuroscience and other scientific

fields—not in how it is done but in how it is explained to and

understood by non-expert lay people. It also suggests an

interesting test case for comparison: mathematical models of

cognition. My intuition is that lay people have the opposite

intuitions about math than they do about pictures of brains:

Adding math to an explanation feels like over complicating

it or perhaps even obscuring tricks done by the experiment-

ers to make their results look good. Thus, I would predict

that non-experts would show the opposite pattern of

responses they do in Weisberg et al. (2008): they should

interpret even good explanations as bad ones if mathematics

is added. To my knowledge, nobody has done this study, but

it would be revealing about the underlying mechanism(s).

The larger point, though, is the suggestion that people

may be relying on their intuitive notions of simplicity when

evaluating scientific theories. In some cases, like when we

favour hypotheses that are more precise over those that are

more unfalsifiable, there is no in-principle difference

between neuroscience and other fields. In other cases, our

preference for simplicity might play out differently in neu-

roscience and other fields because we—especially non-

experts—have different intuitions about what makes an

explanation simple.

POSITIVE AND NEGATIVE TESTS

A common theme in this special issue is the notion of

falsification—the extent to which theories (in particular,

neuroscientific theories) can be eliminated from consider-

ation. This issue has been widely discussed in both philoso-

phy of science and psychology, along with a closely related

issue: what kinds of tests are most effective at falsifying theo-

ries. Positive tests evaluate a hypothesis by investigating

whether the events that it predicts are eventually observed.

In the number rules example, let’s imagine that an alien

arrives and offers to answer queries about what numbers

might be received. A positive test of the hypothesis

MULTIPLES OF 10 would be to ask the alien whether numbers

like 20 or 80 could be observed. If so, this is a partial con-

firmation of the hypothesis; if they are not, this is a falsifi-

cation. Conversely, a negative test of the same hypothesis

would be to ask whether numbers that aren’t multiples of 10,

like 23 or 48, could be observed. If they are, this is a falsifi-

cation of the hypothesis; if not, it is a partial confirmation.

It has been known for a few decades that positive tests are

more efficient than negative tests if the goal is to eliminate

hypotheses, at least when most hypotheses in the space are

sparse (e.g., Austerweil & Griffiths, 2008; Klayman & Ha,

1987; Navarro & Perfors, 2011). Sparse hypotheses are those

in which fewer data points are consistent than inconsistent

with the hypothesis. Thus, more precise hypotheses are

sparser.6 For instance, a hypothesis like MULTIPLES OF 50 is

sparser than MULTIPLES OF 10, which is sparser than EVEN

NUMBERS (which is not sparse at all).

The intuitive reason that positive tests are more efficient

for sparse hypotheses relates to the fact that fewer data

points are consistent with those hypotheses. As a result, any

single data point can rule out many of them. Conversely, if

most hypotheses are non-sparse, then a single negative test

will rule out more hypotheses for a similar reason. This is

illustrated in Fig. 2.

Since we tend to favour hypotheses that are precise (i.e.,

sparse), this would seem to imply that positive tests will

always be more effective in science as well. Is it indeed

always better to evaluate a theory by testing its positive

predictions rather than investigating whether the events

it predicts will not occur actually do not? Not necessarily.

Previous work explores only what would be true of the first

test in a hypothesis space (Austerweil & Griffiths, 2008;

Klayman & Ha, 1987; Navarro & Perfors, 2011). It does not

investigate how such testing might change the overall nature

of the hypothesis space through the selective elimination of

different kinds of hypotheses. In particular, since sparse

hypotheses are eliminated more often than non-sparse

hypotheses by positive tests, one would expect that after a

series of positive tests most hypotheses remaining would not

be sparse. And since positive tests are only more effective

when most hypotheses are sparse, one might expect nega-

tive tests to eventually become more efficient.

We can put these intuitions to the test by simulating a

learner trying to acquire number rules. I created a Bayesian

model capable of learning number rules on the basis of

positive and negative evidence. The model was equipped

with an explicit hypothesis space of rules determined by
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presenting 16 participants with a paper-and-pencil task in

which they were asked to list all of the possible rules for

numbers between 1 and 100 they could think of, as in

Perfors and Navarro (2009). After eliminating idiosyncratic

rules like ADDRESSES, 408 rules for the range (1–100)

remained. They are shown in Table 1.

The prior probability of each hypothesis h was set to

be approximately proportional to the number of partici-

pants who suggested each rule.7 As such, rules like EVEN

NUMBERS had much higher prior probability than DIGITS ARE

INCREASING or FIBONACCI NUMBERS. The likelihood of a posi-

tive test d (where d is a single number) is equal to 0 if d is not

predicted by the hypothesis and 1/|h| if it is, where |h| is

the number of data points predicted by the hypothesis.

The likelihood of a negative test is 0 if d is predicted

by the hypothesis and 1/¬|h|, where ¬|h| is the number of

data points not predicted by the hypothesis.

It is possible to determine which evidence is most effective

for identifying the correct rule out of the entire explicit

hypothesis space of rules. This can be done through the

following algorithm. First, identify the rule to be learned: call

this the ‘target’ rule. Then, at each step, calculate, for each of

the possible n data points between 1 and 100, how many

incorrect hypotheses it will eliminate.8 Then choose the

data point that eliminated the most hypotheses. In the next

step, repeat the process for the hypothesis space consisting of

all of the hypotheses that have not been eliminated, con-

tinuing until the only hypothesis that remains is the correct

one.

Note that the purpose here is not to simulate the steps

taken by a learner: no learner would know what the correct

rule is, so they could not calculate which data point is most

efficient. Rather, the purpose is to perform an analysis of

what data points—and, therefore, what kinds of tests—are

most efficient at different stages in the process. How does this

depend on the nature of the target hypothesis? Does its

sparsity or degree of overlap with other hypotheses affect

this pattern?

Table 2 shows the results of performing the above algo-

rithm for nine different target rules that vary in sparsity and

overlap. At each step, the number reported is the one that

eliminates the most hypotheses (of the ones that remain in

the space at that point). Positive tests are labelled P, and

negative tests are labelled N. In all cases, as predicted by

previous research, the optimal query at the beginning is a

positive test. However, the preference for a positive test flips

to a preference for a negative test after one or two positive

Figure 2 Schematic illustration of two hypothesis spaces in which
individual hypotheses correspond to circles and boxes indicate the
entire hypothesis space or set of outcomes possible. The boxes on
the left show a hypothesis space with all sparse hypotheses, while
the boxes on the right show one with non-sparse hypotheses.
Hypotheses that are ruled out by a test are shown as dashed grey
circles; hypotheses consistent with the test are solid black lines. As
the top row demonstrates, a positive test can rule out many more
hypotheses in a sparse space than a non-sparse one. Conversely, it is
apparent from the bottom row that the opposite is true for negative
tests, which rule out more hypotheses in a non-sparse space than a
sparse one.

Table 1 Rules making up hypothesis space

Rule

Prime numbers
Perfect numbers
xN, for 2 < N < 7 (perfect squares, cubes, etc)
Powers of N, for 2 < N < 10
Fibonacci numbers
One-digit numbers
Two-digit numbers
All numbers
Even / odd numbers
Numbers between 10N and 10(N + 1), for 1 < N < 10
Numbers greater than N, for 1 < N < 100
Numbers less than N, for 3 < N < 99
The number N, for 1 < N < 101
Numbers containing the numeral N, for 0 < N < 10
Numbers ending with the numeral N, for 0 < N < 10
Numbers beginning with the numeral N, for 0 < N < 10
Multiples of N, for 2 < N < 12 Digits are non-decreasing /

increasing
Digits are non-increasing / decreasing

Table 2 Optimal data points at each step for each rule. Positive
tests are labelled P and negative tests are labelled N

Rule Step 1 Step 2 Step 3 Step 4

Digits non-decreasing 7 (P) 99 (P) 71 (N)
Odd numbers 53 (P) 52 (N) 45 (P)
Greater than 50 97 (P) 50 (N) 52 (P) 51 (P)
Prime numbers 7 (P) 6 (N) 2 (P)
Multiples of 5 10 (P) 11 (N) 15 (P)
Contains a 3 83 (P) 82 (N) 38 (P)
Ends in a 7 7 (P) 5 (N) 70 (N) 67 (P)
Multiples of 11 22 (P) 24 (N) 55 (P) 70 (N)
Perfect squares 4 (P) 100 (P) 72 (N)
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tests. This is because, as hypothesised, the positive test(s)

eliminate the sparse, non-overlapping hypotheses, paving

the way for tests that will eliminate the non-sparse ones that

remain. The precise pattern varies for each rule, but in each

case the qualitative picture is the same: Positive tests are

superior at the beginning, followed by negative tests. By the

end, there is often (but not always) a return to a preference

for positive tests, generally because the negative tests have

eliminated most of the non-sparse hypotheses, and all that

remain are a tiny number of sparse hypotheses.

Although this example is a radically simplified version of

the problem confronting scientists, who must investigate a

hypothesis space that is far more complex and overlapping

than the one here, the analysis is abstract enough that some

of its implications may yet apply. It raises the possibility that

the optimal strategy of inquiry might depend how well the

hypothesis space has been already explored. When a new

explicit hypothesis space is identified—perhaps because new

tools or a new framework opens up new questions—positive

tests of the theories or methods may be more appropriate. As

hypotheses get eliminated, negative tests may matter more.

This implies that to the extent that neuroscience and cogni-

tive modelling have been around for different amounts of

time, a reliance on different kinds of tests in the different fields

might actually be sensible. This is completely speculative, but

it does suggest that it may not actually always be appropriate

to evaluate different fields according to the same metric.

MULTIPLE LEVELS OF INVESTIGATION: A TOOL FOR
HYPOTHESIS GENERATION?

In the previous section, I discussed how optimal hypothesis

testing may depend at least in part on how long it has been

since the explicit hypothesis space was first identified.

But how is that done? This is the problem of hypothesis

generation—the problem of opening up new areas of the

latent hypothesis space so that we are aware of those possi-

bilities and can test them. Hypothesis generation is arguably

much more difficult than hypothesis testing; it is also less

studied, in part because it is harder to know where to begin

(though see, Farris & Revlin, 1989; Gettys & Fisher, 1979;

Gettys, Mehle, & Fisher, 1986; Weber, Böckenholt, Hilton, &

Wallace, 1993; M. Cherubini, Castelvecchio, & Cherubini,

2005; Dougherty & Hunter, 2003; Thomas, Dougherty,

Sprenger, & Harbison, 2008; M. R. Dougherty, Thomas, &

Lange, 2010, for some attempts). However, several consid-

erations lead me to think that it is in the realm of hypothesis

generation that we get the most benefit from attempting to

maintain a dialogue between cognitive science and neuro-

science. Indeed, I suggest that there is a tremendous advan-

tage that arises anytime a field has multiple methodologies

that simultaneously pursue answers on multiple levels of

explanation.

What is the advantage? Simply put, the interaction

between multiple different approaches can be a powerful

driver of hypothesis generation. This occurs for a variety of

reasons. One is that new methodologies allow us to explore

hypotheses that we may have been previously aware of but

unable to test. Just as the development of calculus allowed

for the formulation of the laws of motion and the develop-

ment of microscopes made it possible to test and elaborate

the germ theory, so too have tools like fMRI permitted sci-

entists to begin to investigate questions about the brain basis

of behaviour to an unparalleled degree. It is possible to

combine neuroscience and cognitive modelling to address

questions that neither could as well on its own, as in Brown

et al. (submitted). Of course, as with every new frontier—

because it is so new—there are not yet established ways of

combining two different areas, and it may therefore require

more care to avoid bad science. This is not a reason to throw

the baby out with the bathwater; hypothesis generation is

hard enough that it is probably worth working through

these growing pains.

This is a relatively weak sense of hypothesis generation,

because the advent of the new methodology makes hypoth-

eses that we were previously aware of now testable. A stronger

sense is what happens when the crosstalk between fields

results in novel insights in each, either by importing solu-

tions from one field to another, or by identifying novel

questions that aren’t obvious from either field taken indi-

vidually. This kind of crosstalk has occurred many times

throughout history—for example, between thermodynamics

and information theory or population biology and epide-

miology. Closer to home, we can see this in the overlap

between machine learning or AI and computational cogni-

tive science. Because humans have often solved the very

problems that AI struggles with, understanding how humans

do so can help AI researchers design machines that do as

well, as has arguably started happening in the case of vision.

Conversely, AI researchers have often developed tools

that greatly enrich cognitive science, like non-parametric

Bayesian models. It is possible that, as the fields mature, the

cross-talk between neuroscience and cognitive science will

greatly enrich both areas in a similar way. One might

imagine that the benefits of this sort of ‘cross talk’ are a

function of the extent to which the explicit hypothesis

spaces of the two fields involved are different; the more they

overlap, the less insight one might be able to inject in the

other (although, conversely, there might need to be some

overlap to ensure that they can communicate at all).

CONCLUSION

This article has offered a speculative look at some of the

‘big picture’ issues that arise when exploring the merits of
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neuroscience, cognitive science, and the interaction between

the two. Many of the issues arise when comparing any two

methodologies that seek answers to similar sets of questions.

My goal here was not to present any polished results but to

suggest different ways of thinking about this issue.

One of my main suggestions is that it is in the realm of

hypothesis generation—one of the most difficult elements of

science—that the existence of neuroscience and the overlap

between the two fields, may have its richest payoff. I also

considered several issues that arise in the context of hypo-

thesis testing. I reviewed preliminary work suggesting that

whether positive or negative tests are most efficient is to

some extent a function of how old a field is (or how well

explored its explicit hypothesis space is already). This may

create an asymmetry between relatively new fields like

neuroscience and older fields like cognitive modelling. I also

considered the role played by our intuitive notions of sim-

plicity in evaluating which hypotheses to favour. I suggested

that perhaps part of the ‘allure of neuroscience’ may arise,

especially for lay people, because our folk theories of psy-

chology view these types of explanations as particularly

simple or elegant.

ACKNOWLEDGEMENTS

I would like to thank Daniel Navarro for sharing in thought-

ful discussions about some of the ideas in this article.

In addition, Stephan Lewandowsky and two anonymous

reviewers provided many useful suggestions for improve-

ment. This work was funded in part by ARC Grant

DP110104949.

NOTES

1. The distinction between explicit and latent hypothesis

spaces is very reminiscent of a similar distinction proposed

by Thomas et al. (2008) and M. R. Dougherty et al. (2010),

although their notion of explicit hypotheses is limited to

only the ‘leading contenders’. They suggest an additional

distinction of those hypotheses the learner has knowledge

of, which is perhaps more in line with my notion of explicit

hypotheses.

2. It will surprise nobody who knows any philosophers

to learn that there is some debate within the philosophical

literature about the interpretation and applicability of the

Bayesian framework to the process of scientific inquiry.

I lack the space to go into these issues in detail, but interested

readers can turn to Strevens (2006) for an introductory

overview and Perfors (in press) for a discussion of the philo-

sophical implications of explicit and latent hypothesis spaces.

3. Note that if we don’t assume that all allowable outcomes

are equally likely, then the qualitative point remains, but the

details of how precision is calculated would differ.

4. Another notion of precision refers to precision in mea-

surement, which is something quite distinct from precision

in a theory. Precision in measurement focuses on the degree

to which the data can be measured exactly. As Roberts and

Pashler (2000) point out, if the measurement precision is

low, this has implications for evaluating theories: if the error

in measurement is large enough then the data may not

actually constrain the theory very well at all. This problem

might or might not arise as an issue for neuroscientific

theories, but is not what I address here.

5. This idea is deeply intertwined with similar concepts

in information theory and Kolmogorov complexity; see,

e.g., Solomonoff (1964); Kolmogorov (1965); Vitànyi and

Li (2000).

6. I use the word ‘sparse’ rather than ‘precise’ here for

two reasons. First, the literature on positive and negative

hypothesis testing uses the word sparse. Second, and more

importantly, there is a subtle distinction between the words:

‘sparse’ refers to a particular kind of precise hypothesis—

namely one which predicts less than 50% of the outcomes.

That is, ‘sparse’ refers to a particular degree of precision.

Within the space of sparse hypotheses, of course, some are

sparser and more precise than others.

7. This was only approximate because some participants

listed rules like MULTIPLES OF 3 while others listed MUL-

TIPLES OF X, and it was not straightforward how to apply

this to the probability of each individual ‘multiple’ hypo-

thesis. Where necessary, prior probabilities were adjusted

by hand to be in line with our intuitions. Assignment of

the priors was done before any subsequent evaluation.

Moreover, the qualitative pattern of behaviour we are

interested in here depends very little on the nature of the

priors: our question is how the efficacy of different kinds of

evidence changes over time, but the priors do not change

over time.

8. It is also possible to compare data points on the basis of

which ones result in the largest change in entropy. Results

are qualitatively similar.
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