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Simplicity and Fit in Grammatical

Theory
Amy Perfors

Preface

This paper reflects two, somewhat independent, ways that Tom Wasow
has influenced my work. The first concerns the motivating question:
how should we evaluate different grammatical theories or formalisms?
Which best account for human language, and how do we decide? This
issue was emphasized beginning with the first syntax course I ever took
(taught, of course, by Tom), and was an undercurrent in many of the
discussions I had with him henceforth. The second way that Tom influ-
enced my thinking was in his interest in using computational techniques
to study aspects of language. In work with him, David Beaver, and
several others, we used a genetic programming framework to explore
a question in language evolution. Although the approach and question
were different than the one discussed here, the general insight that
computational methods can be a useful tool for investigating aspects
of language dates back to my time spent working with Tom.

1 Overview

Much current research in linguistics and cognitive science is focused
on the question of innateness: whether the cognitive capacities that
enable humans to learn language are language-specific, or whether our
linguistic skill is the result of more domain-general abilities and biases.
Interest in this topic grew especially strong after Chomsky’s (1965)
claim that language learning is only explicable on the basis of an innate
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language faculty, or Universal Grammar. Since then, much inquiry has
focused on the dual questions of (a) to what extent this claim is true;
and (b) to the extent that it is, what is the nature of this Universal
Grammar, or UG?

Addressing these questions requires both the ability to accurately
describe the data that need to be explained, as well as the capacity
to evaluate the different theories that aim to explain that data. In this
paper I describe a paradigm that meets both of these requirements. The
paradigm is based on Bayesian computational modeling of grammars
and complements existing linguistic methodologies.

The structure of the paper is as follows: In the first section, the
utility of such an approach is motivated. Subsequent sections describe
its basic underlying principles, and briefly consider two case studies that
illustrate how it might provide additional insight. The paper concludes
with a discussion of some of the issues and limitations associated with
the paradigm.

2 A Motivation of the Bayesian Approach

Advances in understanding the bases of language learning in the brain
require, among other things, an accurate characterization of the data
(i.e., the language) being learned, as well as a means to evaluate theories
explaining that data. In this section I discuss some of the issues that
surround these two requirements. This motivates the ways in which the
Bayesian paradigm fills some existing gaps.

2.1 Characterizing the Data as a Whole

As a field, linguistics relies on several different kinds of methodolo-
gies in order to properly characterize the data that need to be ex-
plained. One common approach, at least in the subfield of generative
syntax (which we will be focusing on in this article), is a reliance on
grammatical intuitions—introspective judgments as to an expressions’
grammaticality or well-formedness. Though these intuitions can be a
useful tool in guiding the formation of theories, Wasow and Arnold
(2005) argue that using them as the primary or only source of empir-
ical support for a theory can sometimes be problematic, since individ-
ual speakers may often disagree, and intuitions may be rather marginal
even for a single speaker. Other sources of empirical evidence, emerg-
ing from subfields such as psycholinguistics, experimental psychology,
and cognitive science, include reaction-time experiments (e.g., Spivey
& Tanenhaus, 1998), eye-tracking paradigms (e.g., Just & Carpenter,
1980; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995; Alt-
mann & Kamide, 1999), corpus analyses (e.g., Nunberg, Sag, & Wasow,
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1994; Lohse, Hawkins, & Wasow, 2004; Levy, 2008), and survey data
(e.g., Langendoen, Kalish-Landon, & Dore, 1973; Wasow & Arnold,
2005), all of which result in a statistically valid and nuanced picture of
grammatical acceptability.

However, all of these methods often yield data only regarding the
particular constructions or phenomena in question. Though this may be
interesting in its own right, because syntacticians are often focused on
the question of which grammatical formalism or theory best describes
an entire language, it is, of necessity, limited in scope: every theory
includes some phenomena that it can explain easily and some that are
only accounted for via more ad hoc measures. What may often be desir-
able is some method or mechanism that can objectively decide between
entire theories on the basis of how well they account for observed nat-
ural language usage. But how is this achievable even in theory, much
less in practice?

2.2 Evaluating Theories in a Principled Way

Intuitively, there are two main criteria that are essential when deciding
between different linguistic theories. One is the issue of goodness-of-fit:
what is the coverage of the theory to the observed linguistic data? Does
it account for the important phenomena in a wide variety of languages,
while not predicting phenomena that are unobserved or unattested? It
is this criterion that empirical data are relevant to, and the evaluation
of theories with respect to this criterion underlies the importance of
acquiring accurate data. Another, equally important, criterion is that
of simplicity: any theory can achieve complete coverage simply by ex-
haustively listing all of the phenomena in question, but we would quite
clearly like to rule out those theories. Philosophers of science have long
emphasized the importance of simplicity (e.g., Wrinch & Jeffreys, 1921;
Good, 1968; Jaynes, 2003). Within linguistics, many people (including
Chomsky) have called attention to the critical role that simplicity plays
in the evaluation of a linguistic theory (e.g., Chomsky, 1956, 1957, 1965;
Wolff, 1982; Chater & Vitányi, 2007, among others).

Despite the fact that almost everyone accepts the importance of sim-
plicity in evaluating theories, there are few widely agreed-upon criteria
for measuring it. One might argue that simpler formalisms or theories
are those that are less expressive—those that license the fewest phenom-
ena.1 An important branch of research has focused on the expressive-

1This is a view of simplicity that overlaps somewhat with the traditional view of
coverage or goodness-of-fit; one reason that more expressive theories are dispreferred
is that they are so powerful they license grammars or phenomena that do not fall
within the purview of natural language.
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ness of different syntactic theories, including GB, HPSG, minimalism,
and others: for instance, every recursively enumerable set of strings is
a transformational language (Peters & Ritchie Jr., 1973), suggesting
that transformational grammars are more powerful than necessary to
account for natural language. (See also, e.g., Kornai & Pullum, 1990
and Rogers, 1998 for other formal analyses of the expressive power of
different linguistic theories, and Immerman, 1999 for a mathematical
overview).

However, equally important is the question of simplicity of explana-
tion within a theory. Are the central linguistic phenomena accounted
for easily by the theory, or must it contain a multitude of ad hoc excep-
tions, or increasingly complicated rules, in order to account for it? This
sort of simplicity argument is the basis for Chomsky’s famous conclu-
sion that regular grammars (i.e., Markov models, also known as word-
chain grammars) are inadequate to capture natural language (1956):
because any actual corpus or set of data is finite, regular grammars are
in principle capable of capturing them completely, but the presence of
long-distance dependencies means that these grammars will be, in his
words, “so complex as to be of little use or interest.” (p. 115) Under
this notion, then, the expressiveness of a linguistic theory or grammar
is a good thing, because more expressive grammars will (as a general
rule) find it easier to capture any given linguistic phenomenon in a
parsimonious way.

Another measure of the simplicity of a formalism or theory focuses
on the number of primitives or basic operations defined within that
theory. By this measure, minimalism is very simple, since it focuses on
the importance of economy of derivation and economy of representation
when defining linguistic theories, and explains phrase structure in terms
of only two operations, Merge and Move (Chomsky, 1995). In fact,
minimalism is often justified on the basis of simplicity, or based on the
related notion of “perfection” in a theory. However, it has also been
criticized on the grounds that these notions of simplicity and perfection
are too vague to be useful (e.g., Lappin, Levine, & Johnson, 2000).

It is possible to view much of the debate in formal syntax about
different theories as actually a debate between different views of sim-
plicity, and how it should be balanced with goodness-of-fit—both areas
in which there is no substantial agreement. This is partly because, as
already discussed, there is not agreement about what aspects of sim-
plicity matter or how it should be measured; but it is also because it
is unclear how to properly implement the tradeoff between the two. Is
a theory with few primitives and operations, like minimalism, “better”
than a theory that builds more in but produces more precise explana-
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tions? And how should one evaluate theories that explicitly shovel part
of the explanation into another component of the language faculty—a
component that is not fully fleshed out within the theory itself? For in-
stance, it may be accurate to assume that lexical semantics and syntax
are so intertwined that any good syntactic theory should displace much
of the explanation onto word-specific knowledge, as does HPSG—but
that still leaves us with the problem of how to balance HPSG’s simplic-
ity with its explanatory coverage. On some measures it appears quite
parsimonious, but how much of that is because it has succeeded in
offloading most of the explanation onto the lexical semantics of each
word?

The tradeoff between simplicity and goodness-of-fit is a perennial
issue in all of the sciences, and a central topic in philosophy of science
as well. A common heuristic is that of Occam’s Razor—entia non sunt
multiplicanda praeter necessitatem—that an explanatory hypothesis or
theory should not make assumptions (or “postulate entities”) unless
absolutely necessary. Although this heuristic is generally regarded as
little more than a rule of thumb, it has deep connections with Bayesian
probability theory and information theory (e.g., Jeffreys, 1931, 1939;
de Finetti, 1974; Vitànyi & Li, 2000; Jaynes, 2003; MacKay, 2003). In
the next sections, I will illuminate those connections, and demonstrate
how the Bayesian framework may be used to compare and evaluate
grammatical rules and grammatical theories in linguistics. In so doing,
it can provide a means to address some of the difficulties that current
linguistic approaches wrestle with.

3 Principles behind Bayesian Grammar Induction

In Bayesian probability, one’s degree of belief in some hypothesis or
theory is represented by a real number between 0 and 1. The mathe-
matics of probability theory provides rules for “proper reasoning”—for
how to validly combine different premises and beliefs in such a way as
to be sure that you have arrived at the correct conclusion (e.g., Jaynes,
2003). In essence, it is an extension of deductive logic to the case where
propositions, or hypotheses, have degrees of truth or falsity (and is
identical to deductive logic if we know all of the hypotheses with 100%
certainty). Thus, just as formal logic describes a deductively correct
way of thinking, Bayesian probability theory describes an inductively
correct way of thinking. As Laplace said, “probability theory is nothing
but common sense reduced to calculation.”

What does this mean? If we were to try to come up with a set
of desiderata that a system of proper reasoning should meet, they
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might include things like consistency and qualitative correspondence
with common sense—if you see some data supporting a new theory A,
you should conclude that A is more plausible than it was, rather than
less; the more you think A is true, the less you should think it false; if a
conclusion can be reasoned in multiple ways, its probability should be
the same regardless of how you got there; etc. The basic axioms and the-
orems of probability theory, including Bayes’ Rule, emerge when these
desiderata are formalized mathematically (Cox, 1946, 1961), and corre-
spond to common-sense reasoning and the scientific method (Jeffreys,
1931, 1939; de Finetti, 1974; Jaynes, 2003).

This means that optimal inductive inference—of the sort we hope
to achieve in scientific reasoning—should follow the Bayes’ Rule, in
which the probability of a hypothesis given some data p(H|D) is pro-
portional to the probability of the data given that hypothesis p(D|H),
or likelihood, times the prior probability of that hypothesis p(H):

p(H |D) ∝ p(D |H )p(H ) (6.1)

Hypotheses (and data) are defined within the Bayesian framework as
the outgrowth of a generative process: for instance, data (such as spoken
sentences) may be generated from some sort of underlying grammar,
and grammars themselves are generated from a hypothesis space of
candidate grammars. The job of the learner is to choose among different
hypotheses—grammars—on the basis of which ones best account for the
observed data. This choosing is done according to the laws of Bayesian
probability theory, including Bayes’ Rule.

Simplicity is naturally accounted for via the prior probability p(H).
The definition of simplicity and the corresponding calculation of p(H)
are not generally the result of some externally-imposed ad hoc mech-
anism; rather, they emerge naturally from the assumption that hy-
potheses (grammars) themselves are generated from a space of candi-
date hypotheses. For instance, the hypotheses in Figure 1 correspond
to different sets of rectangular regions within a two-dimensional space.
Simpler hypotheses require fewer “choice points” during the genera-
tion process: Hypothesis A can be fully captured by making only four
choices, two for the coordinates of the lower-left-hand corner of the
rectangle (x and y), one for its length (l), and one for its width (w).
By contrast, hypothesis C contains thirty distinct rectangular regions,
and therefore requires 120 separate choices to specify, four for each re-
gion. This notion of calculating complexity as a function of the number
of choice points is a reflection of the idea that the more complicated
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something is, the more likely it becomes that it will be messed up at
some point in the generation process. The more choices a hypothesis
resulted from, the more likely it is that those choices could have been
made in a different way, resulting in a different hypothesis.

FIGURE 1 Hypothesis A is too simple, C is too complex, and B is “just
right.” Hypothesis A is quite simple, but fits the observed data poorly: C

fits closely but is highly complicated. The best description of the data
should optimize a tradeoff between complexity and fit, as in B.

The precise prior probability of a hypothesis is therefore not arbi-
trarily assigned, but rather falls out in a principled way from how the
hypotheses are generated. The generative model for the hypotheses in
Figure 1 is one that can result in any possible combination of rect-
angular regions within the space. A different generative model would
result in a different—but no less principled—assignment of prior prob-
abilities. For instance, if we assumed that the regions could be circles
rather than rectangles, then each region would require three choice
points rather than four (the x and y coordinates of the center of the
circle, plus its radius). The logic favoring simple hypotheses would be
the same: multiple regions will still be a priori less likely than a few.
The precise generative model therefore matters for determining exactly
what the relative probability of a hypothesis would be, but most rea-
sonable models would give qualitatively similar relative probabilities to
qualitatively similar hypotheses.

The Bayesian framework, then, offers a natural way to both calcu-
late the simplicity of different hypotheses or theories, and also evaluate
those theories on the basis of how well they account for the observed
data.2 Bayes’ Rule offers a principled way to evaluate the tradeoff
between simplicity (prior probability) and goodness-of-fit (likelihood).

2A quite similar insight is offered by a minimum description length (MDL) ap-
proach, which suggests that coding length (a measure of simplicity) can be an
important tool for choosing between different linguistic analyses (e.g., Chater &
Vitányi, 2007; Goldsmith, 2007). Indeed, such an approach has been used effec-
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Thus, as in Figure 1, it will naturally tend to prefer hypotheses (like
Hypothesis B) that—like Goldilocks in the famous story—are neither
too weak nor too strong, but are “just right.” Hypothesis C, for in-
stance, clearly has a high degree of goodness-of-fit (likelihood): if the
hypothesis is true—that is, if the data is truly generated by thirty
distinct underlying processes corresponding to the thirty rectangles of
C—the datapoints could hardly be anywhere else. In other words, it
fits (or predicts) the data well. By contrast, hypothesis A has relatively
low likelihood: it does not explain why the datapoints are where they
are, rather than elsewhere within the rectangle. However, hypothesis A
is simple, while C is quite complex. The best description of the data
would be a hypothesis that optimizes the tradeoff between complexity
and fit, as in hypothesis B.

This framework is applicable to hypotheses of much greater com-
plexity than rectangles in a two-dimensional space. It is possible to
define generative models for grammars in which specific grammars, G,
are generated from a larger class of grammar types T (see Horning,
1969; and Feldman, Gips, Horning, & Reder, 1969 for other examples
of this idea). Consider, for instance, context-free grammars, which nat-
urally capture hierarchical phrase structure by being able to generate
sentences in which clauses can be located inside other clauses. Context-
free grammars, or CFGs, have productions of the form X → y; X is
a single non-terminal production (meaning that it can appear on the
left-hand side of a production) and y is a string of non-terminals or
terminals (terminals are constrained to appear on the right-hand-side,
and consist of the output symbols of the grammar). Within the class of
context-free grammars, one could generate a specific grammar by going
through the following steps: (a) to choose the number of non-terminals
n; (b) for each non-terminal k to generate Pk productions; (c) for each
Pk

th production i, to generate Ni right-hand-side items (either one or
two, if we constrain the grammars to be in Chomsky normal form),
each of which are drawn from the grammars vocabulary V (the set
of all non-terminals and terminals). If one wanted the grammars to
be probabilistic, one would also have to assign a vector of production-
probability parameters θk for each non-terminal k. This process imposes

tively for the acquisition of morphology (Goldsmith, 2001), word segmentation (de
Marcken, 1995), and other aspects of grammar (e.g., Dowman, 1998; Grünwald,
1996). One of the main differences between the MDL and the Bayesian frameworks
lies in how simplicity is measured: in the MDL approach, simplicity is captured by
short encoding lengths, while in the Bayesian approach, it is captured by higher
prior probability. However, there are deep similarities between the two approaches
(see, e.g., Vitànyi & Li, 2000, for a discussion).
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a prior probability, as in Equation 6.2, in which simpler grammars—
those with fewer non-terminals, productions, and items—have higher
prior probability (see Perfors, Tenenbaum, and Regier (under review)
for a more thorough explanation of this process). This is captured by
the equation below:

p(G|T ) = p(n)

n∏

k=1

p(Pk)p(θk)

pk∏

i=1

p(Ni)

Ni∏

j=1

1

V
(6.2)

Not only does this process naturally impose a prior probability met-
ric in which shorter grammars with fewer non-terminals are simpler, the
generative framework also naturally operates so that more expressive—
i.e., more complex—grammar types will be effectively penalized. For
instance, the generative model for regular grammars would be analo-
gous to that of the process for context-free grammars, except that the
form of the right-hand side of productions would be more constrained.
Permissible productions for a (right-branching) regular grammar in-
clude only those of the form A → a B or A → a (where capital let-
ters indicate non-terminals and lower-case letters indicate terminals),
whereas context-free grammars may additionally include productions
of the form A → B C, A → B, or A → B a. As a result of this, regular
grammars are a subset of context-free grammars, and if a particular
grammar could be generated as an example of more than one grammar
type, it would receive higher prior probability when generated from the
less expressive type. All other things being equal, one would have to
make fewer “choices” in order to generate a specific regular grammar
from the class containing only regular grammars than from the class of
context-free grammars.

In essence, then, prior probability can be defined over grammars in
such a way as to naturally capture our intuitive notion of simplicity,
in such a way that simpler grammars within a theory will be favored,
and simpler (less expressive) theories will also be favored, all else being
equal. The Bayesian framework also provides a way to compare different
grammars in terms of how well they fit the observed linguistic data
in the world. Consider, for instance, data consisting of a corpus of
sentences spoken by native English speakers. A grammar’s degree of
fit to that data—its likelihood—reflects the probability that the data
would be generated by that grammar. Assuming that each sentence is
generated independently from the grammar, this would be given by the
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product of the likelihoods of each sentences Si in the corpus; with M
unique sentences in the corpus, this would be:

p(D|G) =
M∏

l=1

p(Sl|G) (6.3)

Likelihood reflects the goodness-of-fit of a corpus of data to an under-
lying grammar in the same way that it reflects the goodness-of-fit of
the dataset of dot points to an underlying rectangular “theory” in Fig-
ure 1. In that example, it seems intuitively that hypothesis B fits the
data more closely than hypothesis A, but why? If A were the correct
model, it would be quite a coincidence that all of the datapoints fall
only in the regions covered by B. Similarly, if we were comparing two
grammars X and Y, and X could generate all and only the sentences
observed in the corpus but Y generated many others that were never
observed, then X has better fit: if Y were the correct grammar, it would
be an amazing coincidence that all of the sentences just happened to
be the ones that X could generate. Likelihood is thus dependent on the
quantity of data observed: while it would not be much of a surprise to
see just one or a few sentences consistent with X if Y were in fact the
correct grammar, seeing 1000 sentences—and none that could not be
generated by X—would be very surprising indeed, if Y were correct.

The effective set of sentences that a probabilistic grammar can pro-
duce depends on several factors. All other things being equal, a gram-
mar with more productions will produce more distinct sentence types.
But the number of distinct sentences generated also depends on how
those productions relate to each other: how many of the same left-hand
side terms there are (and thus how much flexibility there is in expand-
ing any one non-terminal), whether the productions can be combined
recursively, and other factors. A penalty for overly expressive or flexible
grammars exists here, too, because likelihood is assigned by considering
all possible ways of generating a sentence under a given grammar and
assigning probabilities to each derivation. The total probability that a
grammar assigns over all possible sentences must sum to one, and thus
the more flexible or expressive the grammar, the lower probability it
will tend to assign to any one sentence.

So far I have demonstrated how the Bayesian framework can be used
in theory to compare entire grammars in terms of their simplicity and
their goodness-of-fit to actual corpora of real, naturalistic data. This
approach is consistent with Chomsky’s formulation of the problem of
language learning, which presumes both a hypothesis space of gram-
mars and the existence of an evaluation metric based on simplicity
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(Chomsky, 1965). Prior probability produces an objective measure of
a grammar’s simplicity, while likelihood captures the degree of fit of a
grammar to the data, and penalizes grammars or grammar types that
are too expressive—that overgeneralize too much beyond the data.

Bayes’ Rule and the mathematics of probability theory provides a
principled way to combine these two factors in such a way to guarantee
optimal inductive reasoning ability. Indeed, it has been formally proven
that an ideal learner incorporating a simplicity metric will be able to
predict the sentences of the language with an error that approaches
zero as the size of the corpus goes to infinity (Solomonoff, 1978; Chater
& Vitányi, 2007). It is therefore reasonable to think that the Bayesian
approach may be well-suited to providing an objective way to compare
different grammatical theories and formalisms within linguistics—and
is thus another method for addressing many of the questions that have
occupied linguists for years. In the next section, I will give some ex-
amples of how this method has been applied, and I will end with a
discussion of the limitations and complexities inherent in applying it
further.

4 Bayesian Grammar Comparison in Practice

4.1 Learning Abstract Syntactic Information

One issue that has been the focus of much work in linguistics for years
is the question of abstract syntactic structure, and to what extent hu-
man learners are born with innate language-specific knowledge about
that structure. It is widely accepted that natural language incorpo-
rates hierarchical phrase structure: that is, that the rules of syntax are
defined over linguistic elements corresponding to phrases that can be
represented hierarchically with respect to one another (Chomsky, 1965,
1980). By contrast, in a language without hierarchical phrase structure
the rules of syntax might make reference only to the individual elements
of the sentence as they appear in a linear sequence.

Why do linguists believe that language has hierarchical phrase struc-
ture? We have already discussed one of the main arguments, originally
proposed by Chomsky in (1956). His conclusion that regular languages
are inadequate to capture natural language centered around their in-
ability to capture hierarchical phrase structure (and therefore long-
distance dependencies based on that structure). The reasoning is, at its
essence, a simplicity-based argument: because regular languages have
so much less expressivity than language classes that incorporate hi-
erarchical phrase structure, a regular grammar sufficient to capture
natural language would have to be unrealistically complex. This ar-

Copyright 2011 CSLI Publications



110 / Amy Perfors

gument, though intuitively compelling and reasonable, is still based on
intuition; would an objective learner capable of trading off the complex-
ity of regular grammars and how well they explained natural language
data arrive at the same conclusion as Chomsky? And what implication
might that have for the question of whether children learning language
might also be able to arrive at the same conclusion?

To explore these questions, Perfors et al. (under review) presented
a Bayesian learner capable of representing both regular and context-
free grammars with a corpus of naturalistic child-directed speech. The
learner was unbiased with respect to grammar type, meaning that it
initially favored neither regular nor context-free grammars as being
a priori more or less likely. Its prior probability and likelihood were
defined as in Equations (6.2) and (6.3), so that it favored grammars
that balance simplicity (containing fewer productions and terminals)
with fit (overgeneralizing less). The data consisted of the sentences
spoken by adults in the Adam corpus (Brown, 1973) of the CHILDES
database (MacWhinney, 2000); in order to focus on grammar learning
rather than lexical acquisition, individual words were replaced by their
syntactic categories.3 Furthermore, each grammar was evaluated based
on the probabilities it assigned to the set of sentence types occurring
in the corpus, independent of the frequencies with which those types
occurred (i.e., the sentence token frequencies). This choice was based on
the adaptor grammar framework of grammar induction introduced by
Goldwater, Griffiths, and Johnson (2006). This parallels—and gives a
principled justification for—the standard linguistic practice of assessing
grammars based on the forms they produce rather than the precise
frequencies of those forms.

A range of grammars was evaluated on this corpus, based on how
well they optimized the tradeoff between simplicity and goodness-of-fit.
Multiple context-free and regular grammars were identified and com-
pared. Because the computational problem of searching the “grammar
space” to identify the optimal one is intractable given current technol-
ogy, we cannot be certain that the grammars considered represent the
“best” of each type. However, every available method for searching the
space as thoroughly as possible was implemented: some grammars were
designed by hand; others were found via local search of the space using

3Although learning a grammar and learning a lexicon are probably tightly linked,
this may be a fair assumption for several reasons: first, because grammars are defined
over these categories, and second, because there is some evidence that aspects of
syntactic-category knowledge may be in place even in young children (e.g. Louann,
Rachel, & William, 2005).
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the hand-designed grammars as a starting point; and other grammars
were generated via an automatic search of the space.

Results indicated that the Bayesian learner preferred grammars
that incorporated hierarchical phrase structure over grammars that
did not: the model attributed the highest overall (posterior) probabil-
ity to context-free grammars, and less to regular grammars or a simple
list of memorized sentences. Interestingly, this remained true even if
the data consisted of a tiny subset of the corpus, equivalent to just
over an hour’s worth of conversation at age 2;3. The reason for this is
that although the regular grammars for the most part achieved a closer
“fit” to the corpus by overgeneralizing less (i.e., producing fewer unob-
served sentences) they accomplished this by sacrificing simplicity: just
as Chomsky hypothesized, these grammars were unwieldy and long,
containing many extra productions and non-terminals relative to the
simpler context-free grammars. Regular grammars constructed to be
as simple as the context-free grammars, on the other hand, lacked the
expressivity to closely capture the sentences of natural language, and
had a lower likelihood than equivalently simple context-free grammars.
In essence, the grammars without hierarchical phrase structure were
like hypotheses A and C in Figure 1, whereas the grammars with it
were more like hypothesis B.

In addition to evaluating entire grammars, this framework can also
be used to explore particular phenomena in linguistics. We will see an
example of this in the next subsection.

4.2 Exploring Recursion

One of the most notable features of human language is its capacity to
generate a potentially infinite number of possible sentences. Because
such a capacity must result from an underlying generative mechanism
(a grammar) that is recursive in some way, many linguists have con-
cluded that recursion must be a fundamental, possibly innate, part of
the language faculty (Chomsky, 1957). Some have gone further and
claimed that the core mechanism underlying recursion is the only part
of language that is specific to humans (Hauser, Chomsky, & Fitch,
2002). While the latter, stronger claim is contested (Pinker & Jackend-
off, 2005), the former has been largely accepted for decades. However,
recent work on Pirahã, a language spoken in the Amazon basin, sug-
gests that there may be a language that does not contain any recursion
in its phrase structure whatsoever (Everett, 2005).

The empirical claim about Pirahã is the subject of much debate
(Nevins, Pesetsky, & Rodrigues, 2007; Everett, 2007), and an essen-
tial key to resolving the debate is to be able to objectively determine
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whether Pirahã is better described by a grammar with recursive ele-
ments or by one without. Lacking an objective and principled mecha-
nism for comparing grammars with respect to linguistic corpora, it can
be difficult to ascertain whether one grammar constitutes a “better de-
scription” than another. However, as before, the Bayesian framework
provides a way of resolving this difficulty.

Here again we see the roles that simplicity and goodness-of-fit play.
The standard reason for thinking that grammar is recursive is because
of its property of discrete infinity: it is composed of discrete basic ele-
ments (words) which can be combined to produce apparently infinitely
many sentences. An infinite set can be generated from a finite grammar
only if the grammar contains some form of recursion; but is it true that
natural language is infinite? After all, there are no infinitely long sen-
tences, and only a finite number of sentences have been uttered. It is
therefore possible to believe that the true grammar is one without any
recursive rules. However, most linguists reject this possibility, on the
grounds of simplicity: a non-recursive grammar capable of generating
natural language would be very large, since it would require additional
sets of rules for each additional depth of recursive expansion.

This simplicity-based argument is reasonable, but is not airtight, and
is based on our intuitions about how much more complex a grammar
with non-recursive instead of recursive rules would be. The complexity
of a grammar would increase with each additional rule, and how many
non-recursive rules would necessarily depend on the precise sentences
being explained. Unfortunately, recursive productions hurt the fit of a
grammar on any finite dataset, since they will always predict sentences
that are not observed. The fewer sentences there are in the dataset that
result from multiple expansions of recursive rules, the more a grammar
with recursive rules is favored relative to one without.

Thus, recursion involves an inherent tradeoff between simplicity and
goodness-of-fit, and we cannot conclude on a priori grounds that any
grammar for natural language must contain recursion. At the very least,
it may not be true in all cases, whether for a specific language (e.g.,
Pirahã), or for a specific rule or set of rules (e.g., center-embedded rela-
tive clauses in English). Perfors, Tenenbaum, Gibson, and Regier (2010)
addressed this issue by comparing grammars (using the definitions of
prior and likelihood given in Equations (6.2) and (6.3) based on how
well they accounted for corpora of natural language data. Instead of
comparing grammars of different types—those with hierarchical phrase
structure and those without—they compared grammars with different
levels of recursion.
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All grammars were context-free, since CFGs are often adopted as
a first approximation to the structure of natural language (Chomsky,
1959) and are standard tools in computational linguistics (e.g., Juraf-
sky & Martin, 2000; Manning & Schütze, 1999). Three main gram-
mars were evaluated that differed from one another only in whether
certain rules were recursive or not. The fully recursive grammar con-
tained fully recursive noun phrases (e.g., NP→ NP CP); another gram-
mar contained no recursive noun phrases at all, but rather multiple-
embedded non-recursive productions involving an additional new non-
terminal, N2, which permitted parses of up to a depth of two. There
was also a “middle ground” grammar containing both recursive and
non-recursive “shadow” rules (which decrease the weight assigned to
the recursive rules by accounting for the many non-recursive instances
of noun phrases).

The grammar with both recursive and non-recursive rules was fa-
vored by the Bayesian learner, largely because it achieved an expressive-
ness similar to the fully-recursive grammar, but without an equivalent
loss in goodness-of-fit. This suggests that syntax, while fundamentally
recursive, might usefully employ non-recursive rules to parse simpler
sentences that recursive rules could parse in principle. This would not
change the expressive capability of the grammar, but might dramati-
cally decrease the cost of recursion. This may also suggest how a learner
could infer that language is recursive, despite never having heard sen-
tences that go beyond only a few levels of embedding in the input:
as long as the recursive rules have low enough weight, the penalty for
“overgeneralizing” beyond a few levels of embedding would be minimal.

5 Further Issues and Concerns

The analysis discussed in this paper is potentially relevant to both of
the two issues raised in section 2. It demonstrates how the Bayesian
framework can provide a useful means for evaluating which specific
grammars and grammar types best capture or explain natural language,
going beyond qualitative, intuitive arguments to provide an objective
criterion for grammar comparison. The analysis does incorporate cer-
tain assumptions—e.g., that sentence types rather than sentence to-
kens are the relevant data, or that grammars with fewer productions
and non-terminals were simpler in the relevant sense—but the Bayesian
framework forces those assumptions to be made explicit and provides
a means to evaluate the extent to which the conclusions depended on
them. Furthermore, this work may have implications for questions of
innateness: if it is possible for an unbiased Bayesian learner to realize

Copyright 2011 CSLI Publications



114 / Amy Perfors

that language has hierarchical phrase structure on the basis of a limited
amount of child-directed speech, what does this imply about whether
such knowledge is (or need be) innate to children? By their nature,
demonstrations of effective learning by Bayesian models cannot neces-
sarily imply anything positive about the learning abilities of children,
but they do serve as a proof-of-concept that something is learnable,
given the assumptions built into the model. As such, they provide an-
other path toward understanding the learning abilities children actually
have.

Other examples of Bayesian methods—or, more generally, computa-
tional methods that combine structured representations with statistical
inference machinery—abound in the computational linguistics and cog-
nitive science literature. Some may have implications for human learn-
ing even if that was not the primary original purpose of the research.
One example of work like this would include the adaptor grammar
framework we briefly discussed earlier (Goldwater et al., 2006; John-
son, 2008). It was originally developed in order to create an adequate
model for the unsupervised learning of morphology, but the general
framework—including the notion of a two-part generative process for
language, which separates the generation of allowable types from the
process that explains their frequencies—may have much broader impli-
cations.

Bayesian methods are also increasingly common as a means to char-
acterize the nature of the learning problem confronting the child, in-
cluding a way to solve it. To list just a few examples, word segmentation
may be accomplished by a learner sensitive to the transition probabil-
ities between words, as well as further contextual dependencies among
words (Goldwater, Griffiths, & Johnson, 2007); the problem of identi-
fying the referents of nouns may be addressed by a learner who attends
to the statistics of word use across multiple situations, and is attentive
to social cues (Frank, Goodman, & Tenenbaum, 2009); and the acqui-
sition of verb argument constructions, even without negative evidence,
may be achieved by a learner sensitive to the statistics of what does not
appear in the input (Alishahi & Stevenson, 2008; Perfors, Tenenbaum,
& Wonnacott, 2010). This sort of research differs from the examples
considered in this paper in that it does not involve the explicit compar-
ison of specific grammars or grammar rules with the goal of identifying
which theories best describe natural language, but the questions are
similar.

One of my goals with this paper was to convince readers of the util-
ity of applying the Bayesian framework for grammar comparison as
a means of addressing two of the most important issues to linguists
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today: addressing the question of innateness, and deciding which for-
malisms or theories best capture natural language. The examples given
here illustrate both how this framework can be useful for addressing
these issues, but they also illustrate some of the potential limitations.
Two of those are especially salient for our purposes here.

First, the utility of this method is limited by the extent to which it
is possible to define and generate all of the grammars or grammatical
rules in question, as a part of a coherent framework. Both of the exam-
ples given analyzed context-free and regular grammars, but none with
greater sophistication: e.g., dependency grammars, grammars with ex-
plicit transformational rules, or minimalist grammars. In part this was
because the simpler grammars were all that was necessary to address
the questions under consideration—but in part it was because the sim-
pler grammars were significantly easier to define within a generative
framework, and to successfully calculate the likelihood for. Likelihood
calculations require accurate and quick parsing of all sentences in the
corpus, and the ability to assign a probability to each of those sen-
tences. The technology for accomplishing this for context-free and reg-
ular grammars exists (Jurafsky & Martin, 2000; Manning & Schütze,
1999) but is less well-established for other types of grammars. This
does not mean that the Bayesian framework for grammar comparison
is not in principle extendible to higher-complexity grammars—but it
does mean that such an implementation would need to co-occur, or
build on, technical advances in these areas.

Second, the extent that one can draw strong conclusions from the
performance of a Bayesian learner on a corpus of natural language
data to the abilities of actual human learners may be somewhat lim-
ited. Something similar could probably be said for any single method,
of course, but this is nevertheless good to keep in mind. Exploring what
sort of grammars or theories a Bayesian learner favors, given some in-
put, can shed light on (a) abstract learnability issues of what it may
be possible to acquire, given certain assumptions about the learner and
the data; (b) what different assumptions about the learner, the data,
or the representation buys you in terms of how it changes the abstract
learnability; and (c) in some objective sense, which theories better de-
scribe the observed data. But in order to draw stronger conclusions
about the actual nature of human learners, the predictions of theoret-
ical models (including Bayesian ones) crucially need to be compared
against empirical evidence about language learning and language use.

In sum, then, this paper has described a computational framework
for comparing grammars and grammatical rules, and given several ex-
amples intended to illustrate how it can be of utility when addressing
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two of the major questions of concern to linguists. The framework is not
intended to supplant other methods in cognitive science or linguistics,
but I suggest that it is a useful tool in the toolbox as we move toward
constructing a full and accurate picture of the human mind.
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