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Abstract 

Cognitive science aims to reverse-engineer the mind, and many of the engineering 

challenges the mind faces involve induction. The probabilistic approach to modeling 

cognition begins by identifying ideal solutions to these inductive problems. Mental 

processes are then modeled using algorithms for approximating these solutions, and 

neural processes are viewed as mechanisms for implementing these algorithms, with the 

result being a top-down analysis of cognition starting with the function of cognitive 

processes. Typical connectionist models, by contrast, follow a bottom-up approach, 

beginning with a characterization of neural mechanisms and exploring what macro-level 

functional phenomena might emerge. We argue that the top-down approach yields greater 

flexibility for exploring the representations and inductive biases that underlie human 

cognition. 
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Probabilistic models of cognition: Exploring representations and inductive biases 

Introduction 

Most approaches to modeling human cognition agree that the mind can be studied on 

multiple levels. David Marr [1] defined three such levels: a computational level 

characterizing the problem faced by the mind and how it can be solved in functional 

terms; an algorithmic level describing the processes that the mind executes to produce 

this solution; and a hardware level specifying how those processes are instantiated in the 

brain. Cognitive scientists disagree over whether explanations at all levels are useful, and 

on the order in which levels should be explored. Many connectionists advocate a bottom-

up or “mechanism-first” strategy (see Glossary), starting by exploring the problems that 

neural processes can solve. This often goes with a philosophy of “emergentism” or 

“eliminativism”: Higher-level explanations do not have independent validity but are at 

best approximations to the mechanistic truth; they describe emergent phenomena 

produced by lower-level mechanisms. In contrast, probabilistic models of cognition 

pursue a top-down or “function-first” strategy, beginning with abstract principles that 

allow agents to solve problems posed by the world – the functions that minds perform – 

and then attempting to reduce these principles to psychological and neural processes. 

Understanding the lower levels does not eliminate the need for higher-level models, 

because the lower levels implement the functions specified at higher levels. 

Explanations at a functional level have a long history in cognitive science. Virtually all 

attempts to engineer human-like artificial intelligence, from the Logic Theory Machine 

[2] to the most successful contemporary paradigms [3], have started with computational 
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principles rather than hardware mechanisms. The great potential of probabilistic models 

of cognition comes from the solutions they identify to inductive problems, which play a 

central role in cognitive science: Most of cognition, including acquiring a language, a 

concept, or a causal model, requires uncertain conjecture from partial or noisy 

information. A probabilistic framework lets us address key questions about these 

phenomena: How much information is needed?  What representations subserve the 

inferences people make?  What constraints on learning are necessary?  These are 

computational-level questions and they are most naturally answered by computational-

level theories. 

Taking a top-down approach leads probabilistic models of cognition to explore a broad 

range of different assumptions about how people might solve inductive problems, and 

what representations might be involved. Representations and inductive biases are selected 

by considering what is needed to account for the functions the brain performs, assuming 

only that those functions of perception, learning, reasoning, and decision can be described 

as forms of probabilistic inference (see Figure 1). In contrast, connectionism makes strong 

pre-commitments about the nature of people’s representations and inductive biases based 

on a certain view of neural mechanisms and development: Representations are graded, 

continuous vector spaces, lacking explicit structure, and are shaped almost exclusively by 

experience through gradual error-driven learning algorithms. This approach rejects a long 

tradition of research into knowledge representation in cognitive science, discarding 

notions such as rules, grammars, and logic that have proven useful in accounting for the 

functions of higher-level cognition.  
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The rest of this article presents our argument for the top-down approach, focusing on 

the importance of representational diversity. The next section describes how structured 

representations of different forms can be combined with statistical learning and inference 

in probabilistic models of cognition, using a case study in semantic cognition that has also 

been the focus of recent work in the connectionist tradition [4]. We then give a broader 

survey, across different domains and tasks, of how probabilistic models have exploited a 

range of representations and inductive biases to explain different aspects of cognition that 

pose a challenge to accounts restricted to the limited forms of representations and weaker 

inductive biases assumed by connectionism. We emphasize breadth over depth of 

coverage since our goal is to illustrate the greater explanatory scope of probabilistic 

models. We then discuss how probabilistic models of cognition should be interpreted in 

terms of lower levels of analysis, a common point of confusion in critiques of this 

approach, and close with several other considerations in choosing whether to pursue a 

top-down, “function-first” or bottom-up, “mechanism-first” approach to cognitive 

modeling. 

Knowledge representation and probabilistic models 

A probabilistic model starts with a formal characterization of an inductive problem, 

specifying the hypotheses under consideration, the relationship between these hypotheses 

and observable data, and the prior probability of each hypothesis (see Box 1). 

Probabilistic models therefore provide a transparent account of the assumptions that allow 

a problem to be solved and make it easy to explore the consequences of different 

assumptions. Hypotheses can take any form, from weights in a neural network [5, 6] to 
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structured symbolic representations, as long as they specify a probability distribution over 

observable data. Likewise, different inductive biases can be captured by assuming 

different prior distributions over hypotheses. The approach makes no a priori 

commitment to any class of representations or inductive biases, but provides a framework 

for evaluating different proposals. 

Figure 2 illustrates one way in which a probabilistic approach can illuminate the nature 

of mental representations. Consider a property induction problem where participants learn 

that horses, cows, and dolphins have a certain property then must decide whether all 

mammals are likely to have this property. Some researchers have proposed that inferences 

about novel properties of animals are supported by tree-structured representations [7], but 

others suggest that the underlying mental representations are closer to continuous 

spaces [8]. One way to resolve this debate is to define a probabilistic framework that can 

use either kind of representation, and to see which representation best explains human 

inferences [9]. The results in Figure 2a suggest that a tree structure is the better of these 

two alternatives. 

Connectionist models typically focus on a single form of knowledge – whatever can be 

encoded in distributed codes over layers of hidden units. Unlike the connectionist 

approach, the probabilistic approach is open to the idea that qualitatively different 

representations are used for different kinds of inferences. Figure 2b shows results from a 

property induction experiment where the items are cities and participants are told, for 

example, that a certain kind of Native American artifact is found near Houston, Durham, 

and Orlando, and then asked whether this artifact is likely to be found near all major 
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American cities. The probabilistic framework that was previously applied to the animal 

data (Figure 2a) now suggests that inferences about spatial relationships between cities 

are better captured by a low-dimensional space than a tree. The same probabilistic 

framework also suggests how people might learn qualitatively different representations 

for different domains [9] (see Figure 2c). 

Rogers and McClelland have argued that connectionist models can implicitly capture 

representations like hierarchically-structured taxonomies, but some kinds of inferences 

seem to rely on explicit representations. For example, explicit representations provide 

natural way to incorporate high-level semantic information provided by natural language 

and informed by social reasoning. To a child who believes that dolphins are fish, hearing 

a simple message from a knowledgeable adult (“dolphins may look like fish but are 

actually mammals”) might drastically modify the inferences she makes. A learner 

equipped with a hierarchically structured system of categories can rearrange the hierarchy 

on hearing such an utterance. In contrast, a connectionist model cannot easily reconfigure 

itself through linguistic input. More generally, while both kinds of approaches may learn 

well from observing the world, only structured probabilistic approaches offer a natural 

route to acquiring knowledge through instruction or other forms of social communication. 

While we have focused so far on simple representations such as trees and low-

dimensional spaces, many other kinds of representations are possible and useful. 

Probabilistic models defined over causal graphs, phrase structure grammars, logical rules 

or theories have been proposed for language, vision, and many other areas of cognition 
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(see Figure 3). These models inherit classic advantages of structured representations that 

connectionist models give up [10, 11]: they generate infinite hypothesis spaces by 

combinatorial operations on basic elements and capture core properties of human 

symbolic thought, such as compositionality and recursion. Connectionists have criticized 

symbolic models for failing to handle exceptions or produce graded generalizations, or to 

account for how representations are learned [4]. Combining structured representations 

with probabilistic inference meets those challenges, while also explaining rich and 

sophisticated uses of knowledge in human cognition that appear to require symbolic 

forms of representation. 

The advantages of representational pluralism 

With their ability to operate over a broad range of candidate representations and inductive 

biases, probabilistic models provide a unifying framework for explaining the inferences 

that people make in different settings. Here we briefly summarize how probabilistic 

approaches have addressed several aspects of human inductive reasoning and learning 

that have not previously been well explained in computational terms, and in particular, 

that would be difficult to explain in a connectionist framework. 

Rapid and flexible generalization. Human learners routinely draw successful 

generalizations from very limited evidence. Even young children can infer the extensions 

of new words or concepts, the hidden properties of objects, or the existence of causal 

relations from a handful of relevant observations. These abilities outstrip those of 

conventional machine learning algorithms, but probabilistic models have shown how 

rapid word learning [12], property induction [13], and causal learning [14] can be 
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explained as Bayesian inferences. Probabilistic models have explained why people may 

appear to generalize differently in different contexts as a consequence applying the same 

rules of optimal statistical inference over different priors [15] or knowledge 

representations [13] (see Figure 2), and why some phenomena, such as Shepard’s 

universal exponential law [16], may arise in an entirely representation-independent way 

[17]. Algorithmic-level models of generalization often posit different processes – rules to 

account for all-or-none generalizations, exemplar similarity to account for more graded 

generalizations – but probabilistic computational theories [18, 19] have explained why we 

have these particular processes, why they work as they do and why people use a rule-like 

process in some cases and a similarity process in others. 

Probabilistic models have also made successful empirical predictions about novel 

factors that can influence children’s generalizations, such as the sampling processes 

generating the data learners observe. Preschoolers and even infants are sensitive to 

whether objects exemplifying a new word or hidden property are drawn specifically from 

the set of positive examples (“strong sampling”), or instead from some more general or 

accidental process (“weak sampling”), and generalize more sharply in the former case 

[20, 21]. Probabilistic models naturally explain these findings, giving sampling processes 

a central role in the statistical problem of generalization through the likelihood term of 

Bayes’ rule [19, 12]. In contrast, informative sampling was not considered in previous 

algorithmic models and is not easily accommodated within standard connectionist models 

of statistical learning. 
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Causal learning. Discovering the causal relationships between objects and events in 

the environment is a basic problem of human learning. Computational-level analyses of 

causal learning have provided two kinds of insights. First, they introduce the distinction 

between structure and strength [22]. When scientists explore causal relations, they 

distinguish between questions of whether a relation exists (determining causal structure), 

and how strong that relation is. This distinction is blurred in associative accounts of 

causal learning, but is explicit when causal learning is framed as Bayesian inference over 

causal graphical models [23, 24]. Probabilistic models based on this approach have given 

compelling quantitative accounts of human causal judgments [22, 25, 26, 27]. Second, 

probabilistic inference provides a way to understand how prior knowledge is combined 

with statistical evidence in causal learning, characterizing the different kinds of 

constraints that prior knowledge can impose [14] and explaining how these constraints 

themselves could be learned [28, 29]. 

Learning language. Children appear to be able to learn what utterances are, and are 

not, allowed in their native language, to some approximation, from exposure only to 

positive examples of the language. Learning merely from positive instances of a category 

has often been viewed as fundamentally problematic, sometimes leading to strong nativist 

conclusions. The probabilistic approach provides powerful tools, both theoretical [30] and 

computational [31], for exploring how much learning is possible with minimal language-

specific innate biases. More broadly, because linguistic representations can be highly 

structured, probabilistic models provide the means to analyze what can be learned given 

what sort of input, and can even be used to evaluate what sorts of structures (e.g., what 
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type of grammar or phrase structure representation) provide the best model of the data. 

Because all probabilistic models are couched in the common language of probability 

theory, they also provide a natural way to combine different sources of data (for instance, 

social cues and co-occurrence relationships when learning the meaning of words [32]). 

Probabilistic models have already been applied to many problems in language 

development, from the acquisition of syntax [31, 33, 34] to word segmentation [35] to 

learning meanings in communicative contexts [32]. On the engineering side of natural 

language processing, where the same ability to learn with hierarchical, compositional or 

recursive representations of meaning is critical, structured statistical models have come to 

dominate and reshaped the state of the art [36]. 

Visual perception. Probabilistic models have also revolutionized computational 

theories of visual perception. Models for low-level vision such as motion estimation or 

shape perception operate over high-dimensional continuous representations: vector fields 

representing motion components or depth gradients [37]. Models for higher-level visual 

tasks often resemble probabilistic parsing in natural language: they operate over 

hierarchically structured representations of objects and parts, assumed to be generated by 

a probabilistic grammar for natural scenes [38, 39] (see Figure 3). 

Learning to learn. Children learn their first words slowly, but in building their initial 

vocabularly they also quickly acquire the ability to learn new words much more rapidly 

 [40]. Hierarchical Bayesian models have been used to explain how humans “learn to 

learn” words [41], as well as categories [42] and causal relationships [28, 43], by 

performing inference on multiple levels of abstraction. Connectionist models have 
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explored similar phenomena [44] but have not explained how children can learn to learn 

so quickly, constructing abstract knowledge of the appropriate form from relatively little 

experience in a domain [9, 43]. 

The psychological and neural interpretation of probabilistic models 

Probabilistic models explain human learning and inductive reasoning in terms of 

Bayesian inference, and specify hypothesis spaces that often have symbolic structure. 

Critics of probabilistic models often argue that they are implausible as accounts of human 

cognition, pointing to the computational difficulty involved in calculating Bayesian 

inference as well as the requirement of building in the hypothesis space. However, all 

models – including connectionist models – build in hypothesis spaces; probabilistic 

models simply make the space explicit. Moreover, this criticism presupposes that a 

computational-level analysis in terms of Bayesian inference requires the algorithmic- or 

hardware-level analysis to take the same form. This assumption is false: Using 

probabilistic models to provide a computational-level explanation does not require that 

hypothesis spaces or probability distributions be explicitly represented by the underlying 

psychological or neural processes, or that people learn and reason by explicitly using 

Bayes’ rule. 

To illustrate how the computational-level specification of a model can differ 

significantly from its realization at the algorithmic and hardware levels, it is useful to 

apply this approach to one of the best-known connectionist models, the multilayer 

perceptron. A multilayer perceptron can be characterized at the computational level as a 

nonlinear function approximator. Its weights parameterize an infinite, high-dimensional 
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hypothesis space of nonlinear functions mapping input vectors to outputs. Learning 

involves searching this hypothesis space for a function that minimizes error on a training 

dataset. This can actually be cast in Bayesian terms: the error corresponds to the negative 

log likelihood of a hypothesis and the prior is either uniform or prefers smaller weights [5, 

6]. 

Described as Bayesian inference in an infinite, high-dimensional hypothesis space, 

learning the weights of a multilayer perceptron might sound implausible as a cognitive 

process. However, considering ways to solve this computational problem approximately 

but tractably suggests more plausible psychological and even neural interpretations. We 

can find at least a local maximum of the Bayesian posterior by computing its gradient in 

weight space and adjusting the weights iteratively along this gradient. Familiar gradient-

descent learning algorithms such as backpropagation implement this strategy in a parallel 

network of neuron-like units, each computing only local functions of the activation and 

error signals of neighboring units. This algorithm does not require explicit enumeration or 

scoring of the full space of hypotheses, nor even any explicit application of Bayes’ rule. 

Similarly, we view the structured representations and Bayesian calculations used in 

probabilistic models of cognition as computational abstractions that could be 

implemented in the mind and brain in a variety of implicit and approximate ways. Such 

implementation may differ across problems, and need not look like explicit structured 

representations or Bayesian inference. Work on connecting probabilistic models to 

psychological process models (see Box 2) and neural computation (see Box 3) illustrates 
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this point, and indicates a possible route towards synthesis with more bottom-up, 

mechanistically constrained approaches to modeling the mind. 

Conclusion: Start at the top, or at the bottom? 

Top-down and bottom-up approaches to traversing levels of analysis are analogous to 

building a single bridge from different ends. Nonetheless, we expect that more rapid 

progress will come from attempts to reduce abstract probabilistic analyses of cognition to 

psychological and neural mechanisms, rather than studies of how analogous 

computational functions might emerge from connectionist networks. The flexibility to 

explore different assumptions about representation and inductive biases, and to naturally 

capture inferences over rich and structured forms of knowledge, are central advantages of 

the top-down approach. However, there are two other important differences between these 

approaches. 

First, the top-down strategy fits particularly well with understanding solutions to the 

computational problems that the mind faces. Finding engineering solutions to these 

problems is the kind of process that typically operates top-down, from high-level 

specification to physical implementation. A probabilistic approach to reverse-engineering 

the mind forges strong connections with the latest ideas from computer science, machine 

learning, and statistics. Bottom-up accounts can be harder to interpret: we may simulate a 

complex system and find that its emergent behavior solves a cognitive problem, but that 

does not mean we will necessarily know how or why it solves it successfully. 
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Second, bottom-up accounts may be highly sensitive to details of the underlying 

mechanisms, and these details are either unknown or abstracted away in most current 

models. For instance, small differences in how neurons process information, adjust their 

weights, or connect with other neurons could lead to very different emergent behavior in a 

large neural network. These possibilities are particularly problematic given the rapidly 

evolving state of neuroscience research and the increasingly unclear relation between 

connectionist networks and biological neural circuits. Committing to a set of assumptions 

about the representations and inductive biases involved in human cognition thus seems 

premature. 

While the phenomena of human cognition must ultimately be analyzed at all of Marr’s 

levels, we are far from understanding how rich knowledge structures can be implemented 

in neural circuits. Whether such implementations will ultimately resemble conventional 

connectionist models is an open question. However, when a neural-level understanding of 

human knowledge and its origins is eventually achieved, we predict that it will build on a 

deep understanding of these questions at the computational level – and that this 

understanding will be best framed using the concepts and principles of probabilistic 

inference. 
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 Box 1: Probabilistic inference 

Probability theory provides a solution to the problem of induction, indicating how a 

learner should revise her degrees of belief in a set of hypotheses in light of the 

information provided by observed data. This solution is encapsulated in Bayes’ rule: If a 

learner considers a set of hypotheses H that might explain observed data d, and assigns 

each hypothesis hH a probability p(h) before observing d (known as the prior 

probability), then Bayes’ rule indicates that the probability p(h|d) assigned to h after 

seeing d (known as the posterior probability) should be  

 



p(h | d) 
p(d | h)p(h)

hH

 p(d | h)p(h)
 (1) 

where p(d|h) is the likelihood, indicating the probability of observing d if h were true, and 

the sum in the denominator simply ensures that the posterior probabilities sum to one. 

Bayes’ rule thus indicates that the conclusions reached by the learner will be determined 

by how well hypotheses cohere with prior knowledge, and how well they explain the data. 
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 Box 2: Connecting to process models 

The discussion in the main text shows how connections between the computational, 

algorithmic, and hardware levels may not be transparent. However, exploring these 

connections is an important part of the strategy of working through levels of analysis from 

the top down. One way to do so is to consider psychological processes that could 

approximate the computations required for probabilistic inference. Applications of 

statistical models in machine learning and artificial intelligence rely on such 

approximation algorithms, since computing exact probabilities is typically intractable for 

complex, real-world problems. These algorithms provide rational approximations to 

probabilistic inference, and thus are a potential source of “rational process models” [45]. 

One class of approximation algorithms is Monte Carlo methods, in which a probability 

distribution is approximated with a set of samples from that distribution. One 

sophisticated Monte Carlo method, importance sampling, can be implemented using the 

same computations as the exemplar models used as process models of categorization [46, 

47], requiring people to store a few hypotheses in memory and activate them based on 

their similarity to observed data [45]. A related set of algorithms known as “particle 

filters” provide a way to approximately update a probability distribution as data are 

observed. They have been used to model deviations from ideal performance in category 

learning [48], associative learning [49], detecting changes in temporal sequences [50], and 

sentence processing [51], and may provide a way to connect all the way to the neural 

level (see Box 3).  
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 Box 3: Probabilistic models and neural computation 

In contrast to connectionism, probabilistic models of cognition rarely emphasize 

inspiration from neuroscience. Increasingly, however, the link between probabilistic 

inference and neural function is drawing the attention of modelers from diverse 

backgrounds. 

One route for linking Bayesian cognitive models to the brain uses connectionism as a 

mediating paradigm: many familiar connectionist algorithms for learning and inference 

have natural Bayesian interpretations [5, 6, 52], and to the extent that these algorithms are 

neurally plausible, they suggest how certain kinds of probabilistic inferences may be 

implemented in the brain. A number of connectionist researchers have emphasized 

explicitly probabilistic formulations for learning and inference, while still attempting to 

preserve the distinctive “connectionist style” of distributed representations arranged in 

hierarchical layers [53]. 

Another group of researchers aims to show how core computations and models from 

Bayesian statistics and machine learning – many of which are also central in probabilistic 

models of cognition – can be implemented in neurally plausible mechanisms. Pouget, 

Beck, Ma and colleagues have studied how to implement Bayesian parameter estimation 

and decision-making using probabilistic population codes in networks of spiking neurons 

[54]. Lee and Mumford [55] suggested that cortical hierarchies may implement a form of 

particle filtering, which is also a candidate for making algorithmic-level models (see main 

text). 
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While research on the “Bayesian brain” holds great promise, there is presently a gulf 

between such a research program and the Bayesian models of higher-level cognition 

reviewed in this article. We have argued that probabilistic inference over structured 

representations is crucial for explaining the use and origins of human concepts, language, 

or intuitive theories. Yet little is known concerning how these structured representations 

can be implemented in neural systems (though see the research program of Smolensky 

and colleagues [56]). In our view, the single biggest challenge for theoretical 

neuroscience is not to understand how the brain implements probabilistic inference, but 

how it represents the structured knowledge over which such inference is defined. 
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 Box 4: Outstanding questions 

• What are the connections between probabilistic models at the computational level, 

and the psychological and neural processes involved in cognition?   

• How (and to what extent) might human behavior be understood as an 

approximation to the “ideal observer” behavior predicted by the probabilistic 

approach?  To what extent can approximations built into probabilistic model 

implementing human-like cognitive limitations account for divergences between 

human and model performance?   

• How might probabilistic inference and structured representations be implemented 

in neural hardware?   

• What questions about human cognition are more naturally framed at levels lower 

than the computational level?  Are there any phenomena for which no computation-

level explanation is possible?   
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 Glossary 

Backpropagation. A gradient-descent based algorithm for estimating the weights in a 

multilayer perceptron, in which each weight is adjusted based on its contribution to the 

errors produced by the network.  

Bottom-up / mechanism-first explanation. A form of explanation that starts by 

identifying neural or psychological mechanisms believed to be responsible for 

cognition, and then tries to explain behavior in those terms.  

Emergentism. A scientific approach in which complex behavior is viewed as emerging 

from the interaction of simple elements.  

Gradient-descent learning. Learning algorithms based on minimizing the error of a 

system (or maximizing the likelihood of the observed data) by modifying the 

parameters of the system based on the derivative of the error.  

Hypothesis space. The set of hypotheses assumed by a learner, as made explicit in 

Bayesian inference and potentially implicit in other learning algorithms.  

Inductive biases. Factors that lead a learner to favor one hypothesis over another that are 

independent of the observed data. When two hypotheses fit the data equally well, 

inductive biases are the only basis for deciding between them. In a Bayesian model, 

these inductive biases are expressed through the prior distribution over hypotheses.  

Inductive problem. A problem in which the observed data are not sufficient to 

unambiguously identify the process that generated them. Inductive reasoning requires 

going beyond the data to evaluate different hypotheses about the generating process, 

while maintaining uncertainty.  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Likelihood. The component of Bayes’ rule that reflects the probability of the data given a 

hypothesis, p(d|h). Intuitively, the likelihood expresses the extent to which the 

hypothesis fits the data.  

Posterior distribution. A probability distribution over hypotheses reflecting the learner’s 

degree of belief in each hypothesis in light of the information provided by the 

observed data. This is the outcome of applying Bayes’ rule, p(h|d).  

Prior distribution. A probability distribution over hypotheses reflecting the learner’s 

degree of belief in each hypothesis prior to observing data, p(h). The prior captures the 

inductive biases of the learner, as it is a factor that contributes to the extent to which 

learners believe in hypotheses that is independent of the observed data.  

Top-down / function-first explanation. A form of explanation that starts by considering 

the function that a particular aspect of cognition serves, explaining behavior in terms 

of performing that function.  
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Figure Captions 

Figure 1:  Theoretical commitments of connectionism and probabilistic models of 

cognition. Based on a certain view of brain architecture and function, connectionist 

models makes strong assumptions about the representations and inductive biases to be 

used in explaining human cognition: representations lack explicit structure and inductive 

biases are very weak. In contrast, probabilistic models explore a larger space of 

possibilities, including representations of diverse forms and degrees of structure, and 

inductive biases of greatly varying shapes and strength. These possibilities include highly 

structured representations and inductive constraints that have proven valuable – and 

arguably necessary – for explaining many of the functions of human cognition. 

Figure 2:  Qualitatively different representations are needed to account for inductive 

inferences about different domains. (a) Model predictions and human responses for a 

property induction task where participants learn that several animals have a property then 

decide whether all animals are likely to have this property. Each point in each scatterplot 

corresponds to a trio of mammals, and the vertical axis indicates how strongly humans 

believe that all mammals have a certain property after learning that the animals in this trio 

have the property. The horizontal axis shows the predictions of probabilistic models 

which assume that nearby animals in a tree tend to have similar properties, or that nearby 

animals in a two dimensional space tend to have similar properties. The tree model relies 

on the tree structure shown and the spatial model relies on the two-dimensional space 

shown. (b) Results for a task where participants make inferences about US cities rather 
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than animal species. The spatial model now performs better than the tree model. (c) 

Relationships between biological species could be represented using a tree, a ring, a set of 

clusters, or a low-dimensional space, but a probabilistic model can discover that a tree 

best accounts for the observable features of these species. 

Figure 3:  Structured statistical models provide a way to describe multiple levels of 

abstraction in a way that applies across different domains. In language, a learner needs to 

be able to discover how sounds are organized into words, how words are organized into 

sentences, and how a language is characterized by a grammar. Learning at each of these 

levels can be described in terms of probabilistic inference over a structured hypothesis 

space [36]. Analogous problems apply in vision, where grammars can be used to describe 

the set of objects in a scene and the surfaces that comprise those objects (figure adapted 

from [38]). 
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