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Abstract

Young children face a difficult learning task: without
having access to the cues that full language mastery
would provide, they must acquire conceptual knowl-
edge about the world; likewise, they must somehow
learn words while lacking the full conceptual structure
that the words refer to. We present a Bayesian frame-
work that can model aspects of the acquisition of the-
ory knowledge as a function of different types of input.
We describe a set of developmental phenomena that our
model can address.

Introduction

Acquiring theories of the world, particularly as they vary
from domain to domain, is one of the most difficult tasks
confronting young children. This is especially the case
for infants and children in the earliest stages of language
learning, since they are faced with two simultaneous
problems: learning words without yet fully grasping the
conceptual theory underlying the domain to which those
words refer, and learning the knowledge underlying a do-
main without yet fully understanding the language that
would give cues to that knowledge.

What constitutes theory knowledge? The question is
the focus of some debate, but for this paper we wish
to limit our focus to two aspects that are believed to
be important facets of theories. The first is structure:
knowledge about the organization of relationships be-
tween objects in a domain. For instance, biological ob-
jects are organized hierarchically with respect to each
other, but political views may be better characterized by
a linear spectrum [2, 12]. The other is knowledge about
feature weights: which features are the most important
or central in that domain. For example, the generaliza-
tion of novel nouns for animals is best done on the basis
of shape or internal features, while for foods it depends
more on color [10, 13, 21].

Of course, feature biases and domain structure are not
independent of each other. Important features are those
that are the most coherent and informative in that do-
main; when that domain is structured, this means that
important features are those that are most coherent with
respect to the structure. For instance, animals organized
in a taxonomic structure would be expected to share
important features (e.g., warm-bloodedness) only with
those animals close to them on the structure (i.e., other
mammals); unimportant features, such as skin color,

could be shared – or not – with objects arbitrarily far
away in the structure.

The interdependence between structures and features
means that learning about structures and learning about
features goes hand-in-hand: initially knowing that some
features are more important than others can constrain
the best structures to ones on which those features to co-
vary coherently. Similarly, initially knowing that some
structure is most appropriate limits the important fea-
tures to those than cluster tightly on that structure.

Though the empirical phenomena underlying the ac-
quisition of knowledge about domain structure and fea-
ture biases are well studied (e.g., [10, 15, 21, 23]), there
are few computational models for them. The main mod-
els involve connectionist networks (e.g., [4, 19]), which
have proven quite useful to cognitive psychologists in
many ways, but which suffer from the disadvantage of
opacity. It is often difficult to understand exactly what
the model is doing and what its representation actually
consists of. Particularly if one is interested in the repre-
sentation and acquisition of structure – such as the tree-
structured taxonomy in folk biology – an unstructured
connectionist approach may not only be less transparent,
but may also perform worse on tasks that specifically rely
on that structure [12].

The Bayesian model of concept acquisition we present
here allows for a tractable and clear exploration of the
interplay between the acquisition of information about
the world and the development of domain theories. Be-
cause we operate in a framework for Bayesian inference,
we incorporate one of the primary advantages of con-
nectionist algorithms – their domain-general statistical
learning character – while still providing the clarity and
explicitness of a more structured approach.

In the following sections we first describe a set of phe-
nomena that arise while children acquire domain-specific
theory knowledge; we then explore how our approach can
naturally model them.

Learning about structure Little is known about at
what age and to what extent children realize that some
domains are organized taxonomically. Some argue that
the tendency to group living kinds into hierarchies re-
flects an “innately determined cognitive structure” [2].
However, children’s behavior changes in ways that sug-
gest they may not initially begin with an accessible tax-
onomic structure. Very young children have a hard time
learning superordinate categories [9], especially if they



already have an appropriate basic-level term in their vo-
cabulary [14]. There is also a clear developmental trend
in the ability to use superordinate or subordinate cat-
egories, either in induction [8], classification [23], or as
the possible target in a word-learning task [15]. In sum,
though the data are unclear about whether very young
children have taxonomic categories, there is strong evi-
dence that at least they have a difficult time using tax-
onomic information until they are older.

At that point, children can apply their knowledge
about taxonomic structure to new learning situations
such as word learning and object classification. 4-year-
old children given multiple examples of a novel word are
capable of generalizing its meaning based on its loca-
tion in a taxonomic structure [22]. Also, learning su-
perordinate labels appears to enable children to improve
their performance on classification tasks in taxonomic
domains [23].

Structural knowledge can also be helpful in prop-
erty induction, since explicit understanding of taxonomic
structure can guide the ability to correctly reason about
novel features [12]. For instance, knowing that whales
are more closely related to elephants than they are to
fish in a taxonomic structure can help one realize that
whales might be warm-blooded like elephants rather
than cold-blooded like fish. Children readily make in-
ductions about the internal features of novel objects in
taxonomic domains based on knowledge of domain struc-
ture, and older children make inferences at the superor-
dinate level more often than younger children [8].

In sum, there is evidence that children learn to repre-
sent or use the correct underlying structure in taxonomic
domains over the first five years of life. They are capa-
ble of using this structure knowledge to correctly classify
novel words and objects as well as to correctly general-
ize about hidden properties of objects. Our model gives
one account for how children’s developmental shift to-
wards the robust use of structural information can arise,
both in a strongly taxonomic domain (animals) as well as
one with a less clear hierarchical structure (foods). The
model also demonstrates how more accurate generaliza-
tion of hidden features in older children may be a result
of their more accurate underlying structural knowledge
about that domain.

Learning about features Children often learn
domain-specific feature biases even before realizing what
the correct structure for that domain is. By the age
of two, they correctly generalize novel count nouns on
the basis of whether the original referent is a solid or a
non-solid [21]. If the referent is a solid, children show
a distinct shape bias: a tendency to generalize the new
word on the basis of shape rather than size, color, or tex-
ture [10, 21]. When the original referent is a non-solid,
children have a “material bias” in which they generalize
the novel name to objects sharing the same material but
having a different shape [21]; however, this bias does not
appear strongly until after 30 months [20].

Though the shape bias emerges earliest and applies to
many domains, children are capable of learning different
biases for different domains. They eventually realize that

functionality is an important feature for artifacts but not
biological kinds [6] and that color is more important for
nonliving natural kinds [11] and food [13].

Just as knowing about structure can help children
learn and classify new objects in a domain, learning
which features are important can help them general-
ize that knowledge to new items as well. Recent work
by Samuelson & Smith suggests that the acquisition of
feature biases can facilitate the learning of new object
names [20]. Their explanation is that children are able
to use the words they learn to infer that categories are
organized by similarity in shape. When presented with
a novel word-object label, they are therefore more apt
to generalize the word based on its shape rather than on
other properties.

In sum, there is evidence that children learn domain-
specific knowledge of feature biases during the first few
years of life. They are then capable of using this fea-
ture knowledge to learn novel words and thus classify
novel objects in that domain. Our model illustrates the
emergence of the shape bias in a domain where it applies
(animals) as well as its lack of emergence in a domain
where other features such as color may be equally or
more important (foods). Additionally, when objects co-
vary coherently according to some features, our model
is capable of recognizing that covariance and using it to
correctly classify new objects.

The Bayesian model

There are two aspects to our model: learning domain
structure and learning feature weights.

The structure-learning component, described more
fully in Kemp, Perfors, & Tenenbaum [12], defines a
structure as a graph over objects, such that objects with
many common features are closer together in the graph.
For instance, a one-dimensional chain is a good struc-
ture for the American political domain because objects
(politicians) on one extreme of the chain tend to share
many features with politicians at their end rather than
politicians on the other extreme. We assume that learn-
ers come to a new domain equipped with the capacity to
represent a range of qualitatively distinct kinds of struc-
tures that could describe that domain, including tax-
onomies (trees), dimensions (chains), and clusters. (A
cluster is a grouping of objects such that all the ob-
jects within it are expected to share many features, but
there is no higher-order relationship between or within
clusters). Though people can surely conceptualize more
complex structure classes, we restrict ourselves to these
three here, as a representative set of simple hypotheses
that small children could reasonably learn about in early
development.

Our model assumes that learners are presented with
data in the form of binary-valued object-feature matri-
ces. We can use Bayesian model selection to evaluate
which structure class was most likely to have generated
this data. More formally, if D is an object-feature ma-
trix, the posterior probability of any structure class C
is proportional to its likelihood under the data p(D|C)
times its prior probability p(C). Since we assign equal



prior probability to all classes, the best class is the one
that makes the data most likely.

Likelihood for trees and chains is calculated based on
the intuition that objects that are “close to” each other
on a structure will be more likely to share features than
objects further away. This is captured formally by as-
suming that features are generated over structures using
a symmetric mutation process, under which the proba-
bility of a feature switching values between the beginning
and end of any branch b is a function of the length of b
and the mutation rate, λ. We assume that features are
conditionally independent given the structure, and can
then compute the likelihood p(D|S, C), the probability
of the data given structure S and structure class C, for
each feature vector taken individually. The likelihood of
any specific structure can be calculated by multiplying
probabilities for each feature taken individually on that
structure; the likelihood of a structure class by integrat-
ing1 over the space of all structures, as below:

p(D|C) =
∫

p(D|S, C)p(S|C)dS (1)

Intuitively, this means that a structure class C pro-
vides a good account of object-feature data D if the
data are highly probable under a range of structures S
in class C, and if these structures themselves have high
prior probability within C. For trees and chains, prior
probability p(S|C) is spread uniformly over the space of
all possible trees or chains. For clusters, we use a prior
over possible cluster partitions that is derived from the
Chinese Restaurant Process [3]. This prior admits any
number of clusters but favors fewer clusters, while the
likelihood favors more clusters in order to fit the data
better. The likelihood p(D|S, C) is defined by a weighted
coin flipping process, with distinct weights for each clus-
ter and for each feature in the data. The balance between
priors and likelihoods instantiates a Bayesian version of
Occam’s razor that finds a cluster model with an ap-
propriate number of clusters. This clustering model is
related to Anderson’s rational model of categorization
[1], and a more mathematical treatment can be found in
[16].

For all structure classes, we can intuitively understand
the “most important” features as the individual features
with the highest likelihood. Feature likelihood captures
the intuition that the highly weighted features are those
that best fit a given structure. For instance, “warm
blooded”, an important feature, is tightly clumped on
an animal taxonomy (only mammals and birds are warm
blooded). The feature “is black”, on the other hand, is
not important and does not fit well (animals of all types
may be black, regardless of where they are in the tax-
onomy). In our model these features would have lower
weights because they have low likelihood given that par-
ticular taxonomy. This intuition applies equally well
to all structure classes: for instance, an important fea-
ture for a given cluster would be one that obeys cluster
boundaries and thus has a higher likelihood.

1In practice, we approximate the integral using Markov
Chain Monte Carlo (MCMC) techniques

The Datasets

We used datasets in two domains, animals and foods. We
chose these domains because they are of great interest to
very young children and contain words that are among
the first few learned [7]. Moreover, the domains may
differ in terms of which structure best describes them
[18] as well as which features are highly weighted [13].

Each dataset is a binary-valued object-feature matrix.
The choice of features and objects was inspired by the
features and objects in the data collected by Cree &
McRae [5]. A subject blind to the hypothesis of the
experiment classified the features as shape, surface (col-
ors and textures), behavior (for animals), smell & taste
(for foods), is-a features corresponding to superordinate
words (e.g. “is a reptile”, “is a vegetable”), and internal
features corresponding to internal properties (e.g., “has
lungs”, “has red blood”). In both domains, all is-a words
were structurally appropriate for a hierarchy. None of
the internal features applied to insects or cephalopods,
but all other animals had at least two.2

The animal dataset contained 60 animals with 112 fea-
tures, and the foods dataset contained 56 foods with 64
features. Animals consisted of mammals, reptiles, birds,
amphibians, and insects; foods consisted primarily of
fruits and vegetables (49 objects), but included desserts
and other staples (bread, rice, etc) as well (7 objects).
Not all objects had the same number of features, but the
variance between objects was small and no objects had
fewer than eight (animal mean: 27 features, sd: 6.86;
food mean: 17.1 features, sd: 4.06).

One way to model development is to alter the nature
and number of features the model works with. Early
in development, children may have access to perceptual,
obvious features, but not to conceptual or hidden ones.
A subject blind to the hypothesis of the experiment clas-
sified each of the features on a scale measuring its degree
of perceptual obviousness (where “is red” is very obvi-
ous, but “has Vitamin C” is very nonobvious). When
we wished to model differing numbers of perceptual fea-
tures, we presented the model input composed of the
most perceptually obvious features.3

Another way to model development is to alter the
number of objects the model works with. This was done
by ranking each object in the order of the age of the
first production of the word corresponding to the object,
according to the 50% norms found in Fenson et al. [7].4
Adding objects in the order of word acquisition might
be seen as a way to model word learning or as a reflec-
tion of the amount of exposure each child has had to the
different objects in the world. Either of these interpreta-

2A copy of the dataset may be found at www.mit.edu/
∼perfors/cogsci05.html.

3There were enough animal features to make two percep-
tual datasets. One had the 48 most perceptually obvious
features, the other had the 61 most obvious.

4A few objects were included if children spoke a similar
word early and that word did not correspond to an object in
the dataset: e.g. rat for mouse. Additionally, children learn
the words bird and fish quite early: these were approximated
by including the most prototypical examples of each category
in the dataset, robin for bird and trout for fish.



Objects # Feat Percept. Ltree Lchain Lclust

20 48 48 -460 -418 -470

20 67 48 -607 -530 -614

40 48 48 -859 -849 -903

40 67 48 -1092 -967 -1098

40 61 61 -1108 -1076 -1166

60 61 61 -1510 -1522 -1639

60 80 61 -1842 -1929 -2013

60 80 61 -2106 -2157 -2255

60 112 61 -2854 -2994 -3051

20 37 37 -417 -405 -415

20 44 37 -477 -443 -482

56 64 37 -2087 -1607 -1680Fo
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Table 1: Log likelihoods on each structure class as a function
of type of input. Higher likelihoods are indicated in bold.

tions is consistent with our results, in which we compare
datasets composed of 20, 40, and 60 objects. Datasets
with fewer objects tend to have a higher proportion of
mammals than later datasets do.

Results

We now explore how our model accounts for the phe-
nomena described in the introduction.

Learning about structure
Our model gives one account of how children’s develop-
mental shift towards the robust use of structural infor-
mation can arise, both in a strongly taxonomic domain
(animals) as well as one with a less clear hierarchical
structure (foods). Table 1 shows the log likelihood val-
ues for each structure class considered by our model,
as a function of its input. Because log likelihoods are
negative, higher likelihood model classes (highlighted in
bold) have a smaller absolute value. Because they are
log probabilities, differences of the magnitude shown in
the table are substantial. Trends in both the foods and
the animals domain can be identified.

The trend in the animal domain demonstrates an
interesting progression from simplicity to complexity.
When there are fewer objects and fewer features, the sim-
pler chain structure class has a higher likelihood than the
more complicated tree structure class (though both had
a higher likelihood for than clusters). The change from
chain to tree is primarily driven by the increased number
of objects in the dataset: all of the datasets with 40 ob-
jects are best fit by a chain, while all of the datasets with
60 objects are best fit by a tree. What are the develop-
mental implications of this change in structure? Because
a chain is one-dimensional, it cannot represent superor-
dinate structure (there are no superordinate nodes in
chains). This is an interesting parallel to evidence sug-
gesting that younger children do not seem to consider or
use the superordinate level in tasks like induction, clas-
sification, or word learning. They do so only when they
reach the age of 4 or 5 years, suggesting that before then
they might not believe that a tree-structure representa-
tion is appropriate. [8, 15, 23]. Why did our model find
that chains were more appropriate than clusters? This
is probably because clusters collapse all within-cluster
information. Since reasonable animal clusters are highly
heterogeneous (for instance, mammals vary widely in
size, shape, and behavior), a cluster structure would lose

Figure 1: Partial consensus trees from two datasets, each
with 60 objects and 61 features. Tree A is built from a dataset
containing internal and is-a as well as perceptual features,
and is more structurally accurate; Tree B is built using only
perceptual features.

too much information compared to a chain.
The food domain is an interesting contrast to animals.

For all food datasets, no matter how many objects or
features the algorithm was working with, the chain class
fit the data better than either the tree or cluster model
class. This may be because our foods dataset was com-
prised primarily of fruits and vegetables. This is in line
with a recent study that found that subcategories are
much less well-differentiated in the domain of fruits than
in the animal domain [18]. Indeed, the best chains fol-
low a sensible path from green leafy vegetables on one
end, through melons, citruses, and berries, then finally
going through legumes and roots before arriving at all
the non-plant foods at the other end.

One area in which the interdependence of features and
structure becomes most apparent is in comparing struc-
tures made using datasets with different features. Is-a
features like “is a mammal” and internal features like
“has warm blood” are often learned by children around
the same time they begin to realize that the animal do-
main is organized taxonomically. Similarly, we find that
the taxonomies found by the model appear more accu-
rate when made using datasets that incorporate these
features compared to datasets incorporating purely per-
ceptual features. Figure 1 compares portions of two 60-
object trees found by our model, each made with 61 fea-
tures. Tree A contains 42 perceptual, nine is-a, and ten
internal features. By contrast, Tree B contained no is-a
or internal features, just the 61 basic perceptual features.

Though both trees are adequate, Tree B has some
structural flaws that are not apparent in Tree A. For
instance, Tree B incorrectly locates the aquatic mam-
mals with the sea creatures and places the panther far
from the other felines. Tree A, which incorporates the
information that aquatic mammals are mammals and
that panthers are felines, does not have these errors.
This supports the intuition that structures incorporat-
ing “more important” features will appear to be more
accurate than structures that do not.

If structures and features are interdependent, improve-
ment in one should lead to improvement in the other. In



this case, does the more accurate structural knowledge
in Tree A lead to improved generalization of hidden or
unknown features? We can test this by observing the
performance of Tree A and Tree B on a property in-
duction task. We compare the inductive predictions us-
ing Tree A and Tree B to the human argument ratings
collected by Osherson et al [17]. Osherson used a ten-
animal domain consisting only of mammals: horse, cow,
chimp, gorilla, mouse, squirrel, dolphin, seal, elephant,
and rhino.5 The specific set contains 36 two-example ar-
guments, and the conclusion species is always “horse.”
The general set contains 45 three-example arguments,
and the conclusion category is “all mammals.” Unfamil-
iar (blank) predicates were used for all these arguments.
The tree-based Bayesian model rates the strength of gen-
eral arguments by computing the probability that all ten
animals in the domain have the property.

The predictions of the model using Tree B were no-
ticeably more poorly correlated with ratings of human
argument strength than were the predictions using Tree
A (specific: r = 0.833 (Tree A), r = 0.739 (Tree B);
general: r = 0.832 (Tree A), r = 0.566 (Tree B)). This
poor performance is probably a result of Tree B’s less
accurate structure. In a similar way, older children’s
more accurate taxonomic knowledge may underlie their
increasingly accurate generalization of hidden features.

Learning about features
We have shown that our model is capable of learning
appropriate structural information and applying that in-
formation to make inferences about features. But can
it learn about features directly by giving more weight
to more important features in a domain? As Figure 2
shows, our model correctly realizes that shape features
should be given more weight in the animal but not the
food domain, and that this realization is a function of
how many objects the model has “seen.” For all animal
datasets with only 20 objects, there was little difference
in the feature likelihoods6 of shape, surface, or behavior
features. For all animal datasets with 60 objects, shape
features are consistently significantly different than sur-
face (color & texture) features.

Unlike in the animal domain, for the foods there is no
significant difference in the likelihoods of any of the fea-
tures at any stage. Thus we do not see the emergence of a
bias towards the shape features; however, there is also no
bias toward other types of features, including the surface
features like color. This contrasts with the finding that
young children consider color features important in the
food domain [13]; however, since our dataset included
primarily fruits and vegetables rather than a represen-
tative sampling of the foods 2-year-olds were likely to
be exposed to, it may not be strictly comparable. In-

5We replaced cow with bison and mouse with rat since
these two words were not in our dataset; this is conservative
because if anything, this would make performance on the
model decrease more for the more “correct” trees, rather than
the reverse.

6All feature likelihoods are calculated with respect to the
best structure for that dataset, but the results are qualita-
tively the same no matter which structure is used.
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Figure 2: Relative (normalized) log likelihood of each type
of feature as the number of objects in the dataset increases.
In the food domain, there is no bias towards one type of
feature no matter how many objects were in the dataset: all
likelihoods are similar. In the animal domain, a shape bias
emerges for larger datasets.

deed, the finding that shape features were likely to have
significantly higher likelihoods than surface features for
animals but not foods suggests that a shape bias will
not just emerge automatically given enough features.7
Rather, shape features for animals simply covary more
coherently with the correct structure, and thus the model
tends to give them a higher likelihood than features that
are less coherent.

Recent work by Samuelson and Smith [20] suggests
that acquiring a shape bias can facilitate the learning of
more object names. Is this evident in our model? When
objects covary coherently according to some features, is
our model capable of recognizing that coherence and us-
ing it to correctly classify new objects?

We can answer this by adapting a test done by Rogers
& McClelland [19]. They trained a connectionist net-
work on 21 biological objects (birds, fish, mammals, and
plants) and 57 features. They then presented it with four
new test items and four new features. The four new fea-
tures included two features they called “size” (large and
small) and two dubbed “brightness” (dull and bright).
Size but not brightness mattered for discriminating be-
tween trees and flowers, while brightness but not size
mattered for discriminating fish and birds (e.g., all birds
were bright and all fish dull, but brightness features var-
ied randomly for the plants). Test objects were given
values on these features such that items O1 & O3 and
O2 & O4 were of the same brightness, but O1 & O2 and
O3 & O4 were of the same size. In one run, the test items
were also given a feature belonging to plants (“roots”);
in another, they were instead given one belonging to an-
imals (“skin”). If the model is able to infer domain-
specific feature biases – size for plants and brightness for
animals – then it should classify the test items according
to their size when they have plant features, but by their
brightness when they have animal features.

We presented our model with the same dataset and
found that test items were classified appropriately. Fig-
ure 3 shows the output tree when test items had the

7It was not that case that shape features have an average
higher likelihood simply because there are more of them; for
instance, in the dataset showing a significant difference be-
tween shape and both surface and behavior features, there
were 23 shape, 15 surface, and 43 behavior features



Figure 3: Performance on the object classification task mod-
eled by that in Rogers and McClelland [19]. Test items O3
& O4 and O1 & O2 should be classified together, since they
share the feature that is important for animals.

“skin” feature. Items 3 and 4, which are the same bright-
ness (an important feature for animals) are classified to-
gether; items 1 and 3, which share size, are not. The run
using the “root” feature shows similar results; for space
reasons, we did not include it.

This suggests that learning a bias for coherently vary-
ing features can actually assist with the generalization
of novel items. A learning algorithm that can correctly
place novel items in the existing domain structure will be
able to learn more of these items than one that cannot.
In our model, learning a bias towards certain features –
that is, learning that some features have a higher likeli-
hood on the correct structure in that domain – can result
in this improved generalization.

Conclusions

The Bayesian model presented here provides an explicit
and tractable paradigm in which to explore the interac-
tion of word learning and concept acquisition. We ex-
plored developmental phenomena in both feature and
structure learning and showed that our model could
qualitatively capture the stages of learning of both. Our
model can also demonstrate how this learned knowledge
might be useful for accurate word/object classification
and property induction. Our intent was not to demon-
strate that it fully captures all aspects of these phe-
nomena, but rather to give a “proof of concept” – a
demonstration that our model can be a useful tool for
cognitive scientists seeking to understand the interac-
tion between features and structure in conceptual devel-
opment, and the role that different types of input may
play. The model can qualitatively and quantitatively ex-
plain a range of interesting phenomena: the emergence
of domain-specific feature biases, the ability to use these
biases to correctly classify new objects, the realization
that some domains are hierarchically organized, and the
ability to use this structure knowledge to improve in-
duction of novel properties. We are optimistic that this
modeling approach has the flexibility and transparency
to be an important tool for developmental psychologists
and cognitive scientists alike.
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